
NoSQL Database Python SDK
Documentation

Oracle

Sep 27, 2023

Contents

1 Installation 3
1.1 Prerequisites . 3
1.2 Downloading and Installing the SDK . 3
1.3 Configuring the SDK . 4

2 Working With Tables 9
2.1 Obtain a NoSQL Handle . 9
2.2 Create Tables and Indexes . 11
2.3 Add Data . 12
2.4 Read Data . 13
2.5 Use Queries . 13
2.6 Delete Data . 15
2.7 Modify Tables . 15
2.8 Delete Tables and Indexes . 16
2.9 Handle Errors . 16
2.10 Handle Resource Limits . 17

3 Data Types 19
3.1 Oracle NoSQL Database Types . 19
3.2 Mapping Between Database and Python types . 19
3.3 Timestamp in Borneo . 20

4 API Reference 21
4.1 borneo Package . 21
4.2 borneo.iam Package . 123
4.3 borneo.kv Package . 127

5 How to find client statistics 131
5.1 How to enable and configure from command line . 131
5.2 How to enable and configure using the API . 132
5.3 Example log entry . 132

Python Module Index 137

Index 139

i

ii

NoSQL Database Python SDK Documentation

This is the Python SDK for the Oracle NoSQL Database. Python 3.5+ is supported.

For information about the Oracle NoSQL Database see https://www.oracle.com/database/technologies/related/nosql.
html

Contents 1

https://www.oracle.com/database/technologies/related/nosql.html
https://www.oracle.com/database/technologies/related/nosql.html

NoSQL Database Python SDK Documentation

2 Contents

CHAPTER 1

Installation

This topic describes how to install, configure, and use the Oracle NoSQL Database Python SDK. There are several
supported environments:

1. Oracle NoSQL Database Cloud Service

2. Oracle NoSQL Database Cloud Simulator

3. Oracle NoSQL Database on-premise

1.1 Prerequisites

The Python SDK requires:

• Python version 3.5 or later, running on Mac, Windows, or Linux.

• For the Oracle NoSQL Cloud Service:

– An Oracle Cloud Infrastructure account

– A user created in that account, in a group with a policy that grants the desired permissions.

• For the Oracle NoSQL Database Cloud Simulator:

– See Download the Oracle NoSQL Cloud Simulator to download and start the Cloud Simulator.

• For the on-premise Oracle NoSQL Database:

– An instance of the database (See Oracle NoSQL Database Downloads)

– A running proxy server, see Information about the proxy

1.2 Downloading and Installing the SDK

You can install the Python SDK through the Python Package Index (PyPI), or alternatively through GitHub.

3

https://www.oracle.com/downloads/cloud/nosql-cloud-sdk-downloads.html
https://www.oracle.com/database/technologies/nosql-database-server-downloads.html
https://docs.oracle.com/pls/topic/lookup?ctx=en/database/other-databases/nosql-database/22.3/admin&id=NSADM-GUID-C110AF57-8B35-4C48-A82E-2621C6A5ED72

NoSQL Database Python SDK Documentation

1.2.1 PyPi

To install from PyPI use the following command:

pip install borneo

1.2.2 GitHub

To install from GitHub:

1. Download the SDK from GitHub. The download is a zip containing a whl file and documentation.

2. Extract the files from the zip.

3. Use the following command to install the SDK:

pip install borneo-*-py2.py3-none-any.whl

Note: If you’re unable to install the whl file, make sure pip is up to date. Use pip install -U pip
and then try to install the whl file again.

1.3 Configuring the SDK

This section describes configuring the SDK for the 3 environments supported. Skip to the section or sections of
interest. The areas where the environments and use differ are

1. Authentication and authorization. This is encapsulated in the AuthorizationProvider interface. The Cloud Ser-
vice is secure and requires a Cloud Service identity as well as authorization for desired operations. The Cloud
Simulator is not secure at all and requires no identity. The on-premise configuration can be either secure or not
and it also requires an instance of the proxy service to access the database.

2. API differences. Some classes and methods are specific to an environment. For example, the on-premise
configuration includes methods to create namespaces and users and these concepts don’t exist in the cloud
service. Similarly, the cloud service includes interfaces to specify and acquire throughput information on tables
that is not relevant on-premise.

1.3.1 Configure for the Cloud Service

The SDK requires an Oracle Cloud account and a subscription to the Oracle NoSQL Database Cloud Service. If you
do not already have an Oracle Cloud account you can start here. Credentials used for connecting an application are
associated with a specific user. If needed, create a user for the person or system using the api. See Adding Users.

Using the SDK with the Oracle NoSQL Database Cloud Service also requires installation of the Oracle Cloud Infras-
tructure (OCI) Python SDK:

pip install oci

Acquire Credentials for the Oracle NoSQL Database Cloud Service

These steps only need to be performed one time for a user. If they have already been done they can be skipped. You
need to obtain the following credentials:

4 Chapter 1. Installation

https://pypi.python.org/pypi/borneo
https://github.com/oracle/nosql-python-sdk/releases
https://www.oracle.com/cloud
https://docs.cloud.oracle.com/en-us/iaas/Content/GSG/Tasks/addingusers.htm

NoSQL Database Python SDK Documentation

• Tenancy ID

• User ID

• API signing key (private key in PEM format)

• Private key pass phrase, only needed if the private key is encrypted

• Fingerprint for the public key uploaded to the user’s account

See Required Keys and OCIDs for detailed descriptions of the above credentials and the steps you need to perform to
obtain them. Specifically:

• How to Generate an API Signing Key

• How to Get the Key’s Fingerprint

• How to Upload the Public Key

• Where to Get the Tenancy’s OCID and User’s OCID

Supplying Credentials to an Application

Credentials are used to establish the initial connection from your application to the service. There are 2 ways to supply
credentials to the application:

1. Directly, via API

2. Using a configuration file

Both mechanisms use borneo.iam.SignatureProvider to handle credentials. If using a configuration file it’s
default location is $HOME/.oci/config, but the location can be changed using the api.

The format of the configuration file is that of a properties file with the format of key=value, with one property per line.
The contents and format are:

[DEFAULT]
tenancy=<your-tenancy-id>
user=<your-user-id>
fingerprint=<fingerprint-of-your-public-key>
key_file=<path-to-your-private-key-file>
pass_phrase=<optional-pass-phrase-for-key-file>

The Tenancy ID, User ID and fingerprint should be acquired using the instructions above. The path to your private key
file is the absolute path of the RSA private key. The order of the properties does not matter. The [DEFAULT] portion
is the profile. A configuration file may contain multiple profiles with the target profile specified in the borneo.iam.
SignatureProvider parameters.

Provide credentials without a configuration file:

from borneo.iam import SignatureProvider

#
Use SignatureProvider directly via API. Note that the
private_key argument can either point to a key file or be the
string content of the private key itself.
#
at_provider = SignatureProvider(

tenant_id='ocid1.tenancy.oc1..tenancy',
user_id='ocid1.user.oc1..user',
private_key=key_file_or_key,

(continues on next page)

1.3. Configuring the SDK 5

https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#How
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#How3
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#How2
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/apisigningkey.htm#Other

NoSQL Database Python SDK Documentation

(continued from previous page)

fingerprint='fingerprint',
pass_phrase='mypassphrase')

Provide credentials using a configuration file in the default location, using the default profile:

from borneo.iam import SignatureProvider

#
Use SignatureProvider with a default credentials file and
profile $HOME/.oci/config
#
at_provider = SignatureProvider()

Provide credentials using a configuration file in a non-default location and non-default profile:

from borneo.iam import SignatureProvider

#
Use SignatureProvider with a non-default credentials file and
profile
#
at_provider = SignatureProvider(config_file='myconfigfile',

profile_name='myprofile')

Connecting an Application

The first step in any Oracle NoSQL Database Cloud Service application is to create a handle used to send requests
to the service. The handle is configured using your credentials and other authentication information as well as the
endpoint to which the application will connect. An example endpoint is to use the region Regions.US_ASHBURN_1.
Information on regions can be found in borneo.Regions.

from borneo import NoSQLHandle, NoSQLHandleConfig, Regions
from borneo.iam import SignatureProvider

#
Required information:
#

the region to which the application will connect
region = Regions.US_ASHBURN_1

if using a specified credentials file
credentials_file = <path-to-your-credentials-file>

#
Create an AuthorizationProvider
#
at_provider = SignatureProvider(config_file=credentials_file)

#
create a configuration object
#
config = NoSQLHandleConfig(region, at_provider)

#

(continues on next page)

6 Chapter 1. Installation

NoSQL Database Python SDK Documentation

(continued from previous page)

create a handle from the configuration object
#
handle = NoSQLHandle(config)

See examples and test code for specific details. Both of these use config*.py files for configuration of required infor-
mation.

1.3.2 Configure for the Cloud Simulator

The Oracle NoSQL Cloud Simulator is a useful way to use this SDK to connect to a local server that supports the same
protocol. The Cloud Simulator requires Java 8 or higher.

See Download the Oracle NoSQL Cloud Simulator to download and start the Cloud Simulator.

1. Download and start the Cloud Simulator

2. Follow instructions in the examples/config.py file for connecting examples to the Cloud Simulator. By default
that file is configured to communicate with the Cloud Simulator, using default configuration.

The Cloud Simulator does not require the credentials and authentication information required by the Oracle NoSQL
Database Cloud Service. The Cloud Simulator should not be used for deploying applications or important data.

Before using the Cloud Service it is recommended that users start with the Cloud Simulator to become familiar with
the interfaces supported by the SDK.

1.3.3 Configure for the On-Premise Oracle NoSQL Database

The on-premise configuration requires a running instance of the Oracle NoSQL database. In addition a running proxy
service is required. See Oracle NoSQL Database Downloads for downloads, and see Information about the proxy for
proxy configuration information.

If running a secure store, a certificate path should be specified through the REQUESTS_CA_BUNDLE environment
variable:

$ export REQUESTS_CA_BUNDLE=<path-to-certificate>/certificate.pem:$REQUESTS_CA_BUNDLE

Or borneo.NoSQLHandleConfig.set_ssl_ca_certs().

In addition, a user identity must be created in the store (separately) that has permission to perform the required
operations of the application, such as manipulated tables and data. The identity is used in the borneo.kv.
StoreAccessTokenProvider.

If the store is not secure, an empty instance of borneo.kv.StoreAccessTokenProvider is used. For exam-
ple:

from borneo import NoSQLHandle, NoSQLHandleConfig
from borneo.kv import StoreAccessTokenProvider

#
Assume the proxy is running on localhost:8080
#
endpoint = 'http://localhost:8080'

#
Assume the proxy is secure and running on localhost:443
#
endpoint = 'https://localhost:443'

(continues on next page)

1.3. Configuring the SDK 7

https://www.oracle.com/downloads/cloud/nosql-cloud-sdk-downloads.html
https://www.oracle.com/database/technologies/nosql-database-server-downloads.html
https://docs.oracle.com/pls/topic/lookup?ctx=en/database/other-databases/nosql-database/22.3/admin&id=NSADM-GUID-C110AF57-8B35-4C48-A82E-2621C6A5ED72

NoSQL Database Python SDK Documentation

(continued from previous page)

#
Create the AuthorizationProvider for a secure store:
#
ap = StoreAccessTokenProvider(user_name, password)

#
Create the AuthorizationProvider for a not secure store:
#
ap = StoreAccessTokenProvider()

#
create a configuration object
#
config = NoSQLHandleConfig(endpoint).set_authorization_provider(ap)

#
set the certificate path if running a secure store
#
config.set_ssl_ca_certs(<ca_certs>)

#
create a handle from the configuration object
#
handle = NoSQLHandle(config)

8 Chapter 1. Installation

CHAPTER 2

Working With Tables

Applications using the Oracle NoSQL Database work with tables. Tables are created and data is added, modified and
removed. Indexes can be added on tables. These topics are covered. Not all options and functions are described here.
Detailed descriptions of interfaces can be found in API Reference.

2.1 Obtain a NoSQL Handle

borneo.NoSQLHandle represents a connection to the service. Once created it must be closed using the method
borneo.NoSQLHandle.close() in order to clean up resources. Handles are thread-safe and intended to be
shared. A handle is created by first creating a borneo.NoSQLHandleConfig instance to configure the commu-
nication endpoint, authorization information, as well as default values for handle configuration.

Configuration requires an borneo.AuthorizationProvider to provide identity and authorization information
to the handle. There are different instances of this class for the different environments:

1. Oracle NoSQL Cloud Service

2. Oracle NoSQL Cloud Simulator

3. Oracle NoSQL Database on-premise

2.1.1 About Compartments

In the Oracle NoSQL Cloud Service environment tables are always created in an Oracle Cloud Infrastructure compart-
ment (see Managing Compartments). It is recommended that compartments be created for tables to better organize
them and control security, which is a feature of compartments. When authorized as a specific user the default com-
partment for tables is the root compartment of the user’s tenancy. A method exists to allow specification of a default
compartment for requests in borneo.NoSQLHandleConfig.set_compartment(). This overrides the user’s
default. In addition it is possible to specify a compartment is each Request instance.

The set_compartment methods take either an id (OCID) or a compartment name or path. If a compartment name
is used it may be the name of a top-level compartment. If a compartment path is used to reference a nested com-

9

https://docs.cloud.oracle.com/en-us/iaas/Content/Identity/Tasks/managingcompartments.htm

NoSQL Database Python SDK Documentation

partment, the path is a dot-separate path that excludes the top-level compartment of the path, for example compart-
mentA.compartmentB.

Instead of setting a compartment in the request it is possible to use a compartment name to prefix a table name in a
request, query, or DDL statement. This usage overrides any other setting of the compartment. E.g.

...
request = PutRequest().set_table_name('mycompartment:mytable')
...
create_statement = 'create table mycompartment:mytable(...)'
...
request = GetRequest().set_table_name('compartmentA.compartmentB')

If the application is authorized using an instance principal (see borneo.iam.SignatureProvider.
create_with_instance_principal()) a compartment must be specified either using a default or in each
request, and it must be specified as an id, as there is no default root compartment in this path.

An example of acquiring a NoSQL Handle for the Oracle NoSQL Cloud Service:

from borneo import NoSQLHandle, NoSQLHandleConfig, Regions
from borneo.iam import SignatureProvider

create AuthorizationProvider
provider = SignatureProvider()

create handle config using the correct desired region as endpoint, add a
default compartment.
config = NoSQLHandleConfig(Regions.US_ASHBURN_1).set_authorization_provider(

provider).set_default_compartment('mycompartment')

create the handle
handle = NoSQLHandle(config)

An example using the on-premise Oracle NoSQL Database in a secure configuration, a certificate path should be
specified through the REQUESTS_CA_BUNDLE environment variable:

$ export REQUESTS_CA_BUNDLE=<path-to-certificate>/certificate.pem:$REQUESTS_CA_BUNDLE

Or borneo.NoSQLHandleConfig.set_ssl_ca_certs(), for example:

from borneo import NoSQLHandle, NoSQLHandleConfig
from borneo.kv import StoreAccessTokenProvider

create AuthorizationProvider
provider = StoreAccessTokenProvider(<user_name>, <password>)

create handle config using the correct endpoint for the running proxy
config = NoSQLHandleConfig(

'https://localhost:443').set_authorization_provider(
provider).set_ssl_ca_certs(<ca_certs>)

create the handle
handle = NoSQLHandle(config)

To reduce resource usage and overhead of handle creation it is best to avoid excessive creation and closing of borneo.
NoSQLHandle instances.

10 Chapter 2. Working With Tables

NoSQL Database Python SDK Documentation

2.2 Create Tables and Indexes

Learn how to create tables and indexes in Oracle NoSQL Database.

Creating a table is the first step of developing your application. You use the borneo.TableRequest class and
its methods to execute Data Definition Language (DDL) statements, such as, creating, modifying, and dropping ta-
bles. If using the Oracle NoSQL Cloud Service or Cloud Simulator you must also set table limits using borneo.
TableRequest.set_table_limits() method. Limits are ignored on-premise, if provided.

Before creating a table, learn about:

The supported data types for Oracle NoSQL Database. See Supported Data Types. Also see Data Types for a descrip-
tion of how database types map to Python.

For the Oracle NoSQL Database Cloud Service limits. See Oracle NoSQL Database Cloud Limits. These limits are
not relevant on-premise.

Examples of DDL statements are:

Create a new table called users
CREATE IF NOT EXISTS users (id INTEGER, name STRING, PRIMARY KEY (id))

Create a new table called users and set the TTl value to 4 days
CREATE IF NOT EXISTS users (id INTEGER, name STRING, PRIMARY KEY (id))
USING TTL 4 days

Create a new index called nameIdx on the name field in the users table
CREATE INDEX IF NOT EXISTS nameIdx ON users(name)

DDL statements are executing using the borneo.TableRequest class. All calls to borneo.NoSQLHandle.
table_request() are asynchronous so it is necessary to check the result and call borneo.TableResult.
wait_for_completion() to wait for operation to complete. The convenience method, borneo.
NoSQLHandle.do_table_request(), exists to combine execution of the operation with waiting for comple-
tion.

from borneo import TableLimits, TableRequest

statement = 'create table if not exists users(id integer, name string, ' +
'primary key(id)'

In the Cloud Service TableLimits is a required object for table creation.
It specifies the throughput and capacity for the table in ReadUnits,
WriteUnits, GB
request = TableRequest().set_statement(statement).set_table_limits(

TableLimits(20, 10, 5))

assume that a handle has been created, as handle, make the request wait
for 40 seconds, polling every 3 seconds
result = handle.do_table_request(request, 40000, 3000)

the above call to do_table_request is equivalent to
result = handle.table_request(request)
result.wait_for_completion(handle, 40000, 3000)

2.2. Create Tables and Indexes 11

https://docs.oracle.com/en/cloud/paas/nosql-cloud/rnpxl/index.html#RNPXL-GUID-833B2B2A-1A32-48AB-A19E-413EAFB964B8
https://docs.oracle.com/en/cloud/paas/nosql-cloud/fkdyw/index.html#FKDYW-GUID-30129AB3-906B-4E71-8EFB-8E0BBCD67144

NoSQL Database Python SDK Documentation

2.3 Add Data

Add rows to your table.

When you store data in table rows, your application can easily retrieve, add to, or delete information from the table.

The borneo.PutRequest class represents input to the borneo.NoSQLHandle.put() method used to insert
single rows. This method can be used for unconditional and conditional puts to:

• Overwrite any existing row. This is the default.

• Succeed only if the row does not exist. Use borneo.PutOption.IF_ABSENT for this case.

• Succeed only if the row exists. Use borneo.PutOption.IF_PRESENT for this case.

• Succeed only if the row exists and its borneo.Version matches a specific borneo.
Version. Use borneo.PutOption.IF_VERSION for this case and borneo.PutRequest.
set_match_version() to specify the version to match.

Options can be set using borneo.PutRequest.set_option().

To add rows to your table:

from borneo import PutRequest

PutRequest requires a table name
request = PutRequest().set_table_name('users')

set the value
request.set_value({'id': i, 'name': 'myname'})
result = handle.put(request)

a successful put returns a non-empty version
if result.get_version() is not None:

success

When adding data the values supplied must accurately correspond to the schema for the table. If they do not, Il-
legalArgumentException is raised. Columns with default or nullable values can be left out without error, but it is
recommended that values be provided for all columns to avoid unexpected defaults. By default, unexpected columns
are ignored silently, and the value is put using the expected columns.

If you have multiple rows that share the same shard key they can be put in a single request using borneo.
WriteMultipleRequest which can be created using a number of PutRequest or DeleteRequest objects.

You can also add JSON data to your table. In the case of a fixed-schema table the JSON is converted to the target
schema. JSON data can be directly inserted into a column of type JSON. The use of the JSON data type allows you to
create table data without a fixed schema, allowing more flexible use of the data.

2.3.1 Add JSON Data

The data value provided for a row or key is a Python dict. It can be supplied to the relevant requests (GetRequest,
PutRequest, DeleteRequest) in multiple ways:

• as a Python dict directly:

request.set_value({'id': 1})
request.set_key({'id': 1 })

• as a JSON string:

12 Chapter 2. Working With Tables

NoSQL Database Python SDK Documentation

request.set_value_from_json('{"id": 1, "name": "myname"}')
request.set_key_from_json('{"id": 1}')

In both cases the keys and values provided must accurately correspond to the schema of the table. If not an borneo.
IllegalArgumentException exception is raised. If the data is provided as JSON and the JSON cannot be
parsed a ValueError is raised.

2.4 Read Data

Learn how to read data from your table.

You can read single rows using the borneo.NoSQLHandle.get() method. This method allows you to retrieve a
record based on its primary key value. In order to read multiple rows in a single request see Use Queries, below.

The borneo.GetRequest class is used for simple get operations. It contains the primary key value for the target
row and returns an instance of borneo.GetResult.

from borneo import GetRequest

GetRequest requires a table name
request = GetRequest().set_table_name('users')

set the primary key to use
request.set_key({'id': 1})
result = handle.get(request)

on success the value is not empty
if result.get_value() is not None:

success

By default all read operations are eventually consistent, using borneo.Consistency.EVENTUAL. This type of
read is less costly than those using absolute consistency, borneo.Consistency.ABSOLUTE. This default can
be changed in borneo.NoSQLHandle using borneo.NoSQLHandleConfig.set_consistency() before
creating the handle. It can be changed for a single request using borneo.GetRequest.set_consistency().

2.5 Use Queries

Learn about using queries in your application.

Oracle NoSQL Database provides a rich query language to read and update data. See the SQL For NoSQL Specifica-
tion for a full description of the query language.

There are two ways to get the results of a query: using an iterator or loop through partial results.

2.5.1 Iterator

Use borneo.NoSQLHandle.query_iterable() to get an iterable that contains all the results of a query.
Usage example:

from borneo import QueryRequest

handle = ...

(continues on next page)

2.4. Read Data 13

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/nosql-cloud&id=sql_nosql
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/nosql-cloud&id=sql_nosql

NoSQL Database Python SDK Documentation

(continued from previous page)

statement = 'select * from users where name = "Taylor"'
request = QueryRequest().set_statement(statement)
qiresult = handle.query_iterable(request)
for row in qiresult:

do something with the result row
print(row)

2.5.2 Partial results

Another way is to loop through partial results by using the borneo.NoSQLHandle.query() method. For exam-
ple, to execute a SELECT query to read data from your table, a borneo.QueryResult contains a list of results.
And if the borneo.QueryRequest.is_done() returns False, there may be more results, so queries should gen-
erally be run in a loop. It is possible for single request to return no results but the query still not done, indicating that
the query loop should continue. For example:

from borneo import QueryRequest

Query at table named 'users" using the field 'name' where name may match 0
or more rows in the table. The table name is inferred from the query
statement
statement = 'select * from users where name = "Taylor"'
request = QueryRequest().set_statement(statement)
loop until request is done, handling results as they arrive
while True:

result = handle.query(request)
handle results
handle_results(result) # do something with results
if request.is_done():

break

When using queries it is important to be aware of the following considerations:

• Oracle NoSQL Database provides the ability to prepare queries for execution and reuse. It is recommended that
you use prepared queries when you run the same query for multiple times. When you use prepared queries,
the execution is much more efficient than starting with a query string every time. The query language and API
support query variables to assist with query reuse. See borneo.NoSQLHandle.prepare() and borneo.
PrepareRequest for more information.

• The borneo.QueryRequest allows you to set the read consistency for a query as well as modifying the
maximum amount of resource (read and write) to be used by a single request. This can be important to prevent
a query from getting throttled because it uses too much resource too quickly.

Here is an example of using a prepared query with a single variable:

from borneo import PrepareRequest, QueryRequest

Use a similar query to above but make the name a variable
statement = 'declare $name string; select * from users where name = $name'
prequest = PrepareRequest().set_statement(statement)
presult = handle.prepare(prequest)

use the prepared statement, set the variable
pstatement = presult.get_prepared_statement()
pstatement.set_variable('$name', 'Taylor')
qrequest = QueryRequest().set_prepared_statement(pstatement)

(continues on next page)

14 Chapter 2. Working With Tables

NoSQL Database Python SDK Documentation

(continued from previous page)

qiresult = handle.query_iterable(qrequest)
loop on all the results
for row in qiresult:

do something with the result row
print(row)

use a different variable value with the same prepared query
pstatement.set_variable('$name', 'another_name')
qrequest = QueryRequest().set_prepared_statement(pstatement)
loop until qrequest is done, handling results as they arrive
while True:

use the prepared query in the query request
qresult = handle.query(qrequest)
handle results
handle_results(qresult) # do something with results
if qrequest.is_done():

break

2.6 Delete Data

Learn how to delete rows from your table.

Single rows are deleted using borneo.DeleteRequest using a primary key value:

from borneo import DeleteRequest

DeleteRequest requires table name and primary key
request = DeleteRequest().set_table_name('users')
request.set_key({'id': 1})

perform the operation
result = handle.delete(request)
if result.get_success():

success -- the row was deleted

if the row didn't exist or was not deleted for any other reason, False is
returned

Delete operations can be conditional based on a borneo.Version returned from a get operation. See borneo.
DeleteRequest.

You can perform multiple deletes in a single operation using a value range using borneo.MultiDeleteRequest
and borneo.NoSQLHandle.multi_delete().

2.7 Modify Tables

Learn how to modify tables. You modify a table to:

• Add or remove fields to an existing table

• Change the default TimeToLive (TTL) value for the table

• Modify table limits

2.6. Delete Data 15

NoSQL Database Python SDK Documentation

Examples of DDL statements to modify a table are:

Add a new field to the table
ALTER TABLE users (ADD age INTEGER)

Drop an existing field from the table
ALTER TABLE users (DROP age)

Modify the default TTl value
ALTER TABLE users USING TTL 4 days

If using the Oracle NoSQL Database Cloud Service table limits can be modified using borneo.TableRequest.
set_table_limits(), for example:

from borneo import TableLimits, TableRequest

in this path the table name is required, as there is no DDL statement
request = TableRequest().set_table_name('users')
request.set_table_limits(TableLimits(40, 10, 5))
result = handle.table_request(request)

table_request is asynchronous, so wait for the operation to complete, wait
for 40 seconds, polling every 3 seconds
result.wait_for_completion(handle, 40000, 3000)

2.8 Delete Tables and Indexes

Learn how to delete a table or index.

To drop a table or index, use the drop table or drop index DDL statement, for example:

drop the table named users (implicitly drops any indexes on that table)
DROP TABLE users

drop the index called nameIndex on the table users. Don't fail if the index
doesn't exist
DROP INDEX IF EXISTS nameIndex ON users

from borneo import TableRequest

the drop statement
statement = 'drop table users'
request = TableRequest().set_statement(statement)

perform the operation, wait for 40 seconds, polling every 3 seconds
result = handle.do_table_request(request, 40000, 3000)

2.9 Handle Errors

Python errors are raised as exceptions defined as part of the API. They are all instances of Python’s RuntimeError.
Most exceptions are instances of borneo.NoSQLException which is a base class for exceptions raised by the
Python driver.

Exceptions are split into 2 broad categories:

16 Chapter 2. Working With Tables

NoSQL Database Python SDK Documentation

• Exceptions that may be retried with the expectation that they may succeed on retry. These are all
instances of borneo.RetryableException. Examples of these are the instances of borneo.
ThrottlingException which is raised when resource consumption limits are exceeded.

• Exceptions that should not be retried, as they will fail again. Examples of these include borneo.
IllegalArgumentException, borneo.TableNotFoundException, etc.

borneo.ThrottlingException instances will never be thrown in an on-premise configuration as there are no
relevant limits.

2.10 Handle Resource Limits

This section is relevant only to the Cloud Service and Simulator.

Programming in a resource-limited environment can be unfamiliar and can lead to unexpected errors. Tables have
user-specified throughput limits and if an application exceeds those limits it may be throttled, which means requests
will raise instances of borneo.ThrottlingException.

There is some support for built-in retries and users can create their own borneo.RetryHandler instances to be
set using borneo.NoSQLHandleConfig.set_retry_handler() allowing more direct control over retries
as well as tracing of throttling events. An application should not rely on retries to handle throttling exceptions as
that will result in poor performance and an inability to use all of the throughput available for the table. This happens
because the default retry handler will do exponential backoff, starting with a one-second delay.

While handling borneo.ThrottlingException is necessary it is best to avoid throttling entirely by rate-
limiting your application. In this context rate-limiting means keeping request rates under the limits for the table.
This is most common using queries, which can read a lot of data, using up capacity very quickly. It can also happen
for get and put operations that run in a tight loop. Some tools to control your request rate include:

• use the methods available in all Result objects that indicate how much read and write throughput was used by
that request. For example, see borneo.GetResult.get_read_units() or borneo.PutResult.
get_write_units().

• reduce the default amount of data read for a single query request by using borneo.QueryRequest.
set_max_read_kb(). Remember to perform query operations in a loop, looking at the continuation key.
Be aware that a single query request can return 0 results but still have a continuation key that means you need
to keep looping.

• add rate-limiting code in your request loop. This may be as simple as a delay between requests or intelligent
code that considers how much data has been read (see borneo.QueryResult.get_read_units()) as
well as the capacity of the table to either delay a request or reduce the amount of data to be read.

2.10. Handle Resource Limits 17

NoSQL Database Python SDK Documentation

18 Chapter 2. Working With Tables

CHAPTER 3

Data Types

This topic describes the mapping between types in the Oracle NoSQL Database and Python data types. The database
types are referred to as database types while the Python equivalents are Python types.

3.1 Oracle NoSQL Database Types

See Supported Data Types for a description of the data types supported by the service. An application uses these
types to create tables and indexes. For example, a table may be created using this Data Definition Language (DDL)
statement, which defines types in terms of the database types:

create table mytable(id integer, name string, created timestamp,
address record(street string, city string, zip integer), primary key(id))

In order to insert rows into such a table your application must create a Python dict that corresponds to that schema, for
example:

{'id': 1, 'name': 'myname', 'created': datetime.now(),
'address' : {'street' : '14 Elm Street', 'city' : 'hometown',
'zip' : 00000}}

Similarly, when operating on rows retrieved from the database it is important to understand the mappings to Python
types.

3.2 Mapping Between Database and Python types

These mappings apply on both input (get/query) and output (put). In general the system is permissive in terms of valid
conversions among types and that any lossless conversion is allowed. For example an integer will be accepted for a
float or double database type. The Timestamp type is also flexible and will accept any valid IS0 8601 formatted string.
Timestamps are always stored and managed in UTC.

19

https://docs.oracle.com/en/cloud/paas/nosql-cloud/rnpxl/index.html#RNPXL-GUID-833B2B2A-1A32-48AB-A19E-413EAFB964B8

NoSQL Database Python SDK Documentation

Database Type Python Type
Integer int
Long int (Python 3), long (Python2)
Float float
Double float
Number decimal.Decimal
Boolean bool
String str
Timestamp datetime.datetime
Enum str
Binary bytearray
FixedBinary bytearray
Array list
Map dict
Record dict
JSON any Python datatype that can be represented as JSON without data loss

3.3 Timestamp in Borneo

As mentioned above Timestamp fields are managed internally as UTC time. If a timezone is supplied when setting a
Timestamp, either as a string or as a Python datetime object, it will be honored. The value will be converted to UTC
internally and will be in UTC when returned in a row. Although they are represented in UTC returned datetime objects
will be “naive” as described by Python documentation. On input, if no timezone is supplied, python datetime instances
and time strings are treated as UTC.

20 Chapter 3. Data Types

CHAPTER 4

API Reference

4.1 borneo Package

4.1.1 Classes

AuthorizationProvider AuthorizationProvider is a callback interface used by
the driver to obtain an authorization string for a request.

BatchOperationNumberLimitException(message)Cloud service only.
Consistency Set the consistency for read requests.
Durability(master_sync, replica_sync, . . .) Durability defines the durability characteristics associ-

ated with a standalone write (put or update) operation.
DefaultRetryHandler([retries, delay_s]) Default retry handler.
DeleteRequest() Represents the input to a NoSQLHandle.delete()

operation.
DeleteResult() Represents the result of a NoSQLHandle.delete()

operation.
FieldRange(field_path) FieldRange defines a range of values to be used

in a NoSQLHandle.multi_delete() oper-
ation, as specified in MultiDeleteRequest.
set_range().

GetIndexesRequest() Represents the argument of a NoSQLHandle.
get_indexes() operation which returns the infor-
mation of a specific index or all indexes of the specified
table, as returned in GetIndexesResult.

GetIndexesResult() Represents the result of a NoSQLHandle.
get_indexes() operation.

GetRequest() Represents the input to a NoSQLHandle.get() op-
eration which returns a single row based on the specified
key.

Continued on next page

21

NoSQL Database Python SDK Documentation

Table 1 – continued from previous page
GetResult() Represents the result of a NoSQLHandle.get() op-

eration.
GetTableRequest() Represents the argument of a NoSQLHandle.

get_table() operation which returns static in-
formation associated with a table, as returned in
TableResult.

IllegalArgumentException([message, cause]) Exception class that is used when an invalid argument
was passed, this could mean that the type is not the ex-
pected or the value is not valid for the specific case.

IllegalStateException([message, cause]) Exception that is thrown when a method has been in-
voked at an illegal or inappropriate time.

IndexExistsException(message) The operation attempted to create an index for a table
but the named index already exists.

IndexInfo(index_name, field_names[, field_types]) IndexInfo represents the information about a single in-
dex including its name, field names and field types.

IndexNotFoundException(message) The operation attempted to access a index that does not
exist or is not in a visible state.

InvalidAuthorizationException(message) The exception is thrown if the application presents an
invalid authorization string in a request.

ListTablesRequest() Represents the argument of a NoSQLHandle.
list_tables() operation which lists all available
tables associated with the identity associated with the
handle used for the operation.

ListTablesResult() Represents the result of a NoSQLHandle.
list_tables() operation.

MultiDeleteRequest() Represents the input to a NoSQLHandle.
multi_delete() operation which can be used
to delete a range of values that match the primary key
and range provided.

MultiDeleteResult() Represents the result of a NoSQLHandle.
multi_delete() operation.

NoSQLException(message[, cause]) A base class for most exceptions thrown by the NoSQL
driver.

NoSQLHandle(config) NoSQLHandle is a handle that can be used to access
Oracle NoSQL tables.

NoSQLHandleConfig([endpoint, provider]) An instance of this class is required by NoSQLHandle.
OperationNotSupportedException(message) The operation attempted is not supported.
OperationResult() A single Result associated with the execution of

an individual operation in a NoSQLHandle.
write_multiple() request.

OperationThrottlingException(message) Cloud service only.
PreparedStatement(sql_text, query_plan, . . .) A class encapsulating a prepared query statement.
PrepareRequest() A request that encapsulates a query prepare call.
PrepareResult() The result of a prepare operation.
PutOption Set the put option for put requests.
PutRequest() Represents the input to a NoSQLHandle.put() op-

eration.
PutResult() Represents the result of a NoSQLHandle.put() op-

eration.
QueryRequest() A request that represents a query.

Continued on next page

22 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 1 – continued from previous page
QueryResult(request[, computed]) QueryResult comprises a list of dict instances represent-

ing the query results.
QueryIterableResult(request, handle) QueryIterableResult comprises an iterable list of dict in-

stances representing all the query results.
ReadThrottlingException(message) Cloud service only.
Region(region_id) Cloud service only.
Regions Cloud service only.
Request() A request is a class used as a base for all requests types.
RequestSizeLimitException(message) Cloud service only.
RequestTimeoutException(message[, . . .]) Thrown when a request cannot be processed because the

configured timeout interval is exceeded.
ResourceExistsException(message) The operation attempted to create a resource but it al-

ready exists.
ResourcePrincipalClaimKeys Claim keys in the resource principal session to-

ken(RPST).
ResourceNotFoundException(message) The operation attempted to access a resource that does

not exist or is not in a visible state.
Result() Result is a base class for result classes for all supported

operations.
RetryHandler RetryHandler is called by the request handling system

when a RetryableException is thrown.
RetryableException(message) A base class for all exceptions that may be retried with

a reasonable expectation that they may succeed on retry.
SecurityInfoNotReadyException(message) Cloud service only.
State Represents the table state.
StatsControl(config, logger, . . .) StatsControl allows user to control the collection of

driver statistics at
StatsProfile The following semantics are attached to the StatsProfile

values:
SystemException(message) An exception that is thrown when there is an internal

system problem.
SystemRequest() On-premise only.
SystemResult() On-premise only.
SystemState On-premise only.
SystemStatusRequest() On-premise only.
TableExistsException(message) The operation attempted to create a table but the named

table already exists.
TableLimits(read_units, write_units, storage_gb) Cloud service only.
TableNotFoundException(message) The operation attempted to access a table that does not

exist or is not in a visible state.
TableRequest() TableRequest is used to create, modify, and drop tables.
TableResult() TableResult is returned from NoSQLHandle.

get_table() and NoSQLHandle.
table_request() operations.

TableUsageRequest() Cloud service only.
TableUsageResult() Cloud service only.
ThrottlingException(message) Cloud service only.
TimeToLive(value, timeunit) TimeToLive is a utility class that represents a period of

time, similar to java.time.Duration in Java, but special-
ized to the needs of this driver.

TimeUnit The time unit to use.
Continued on next page

4.1. borneo Package 23

NoSQL Database Python SDK Documentation

Table 1 – continued from previous page
UserInfo(user_id, user_name) On-premise only.
Version(version) Version is an opaque class that represents the version of

a row in the database.
WriteMultipleRequest() Represents the input to a NoSQLHandle.

write_multiple() operation.
WriteMultipleResult() Represents the result of a NoSQLHandle.

write_multiple() operation.
WriteThrottlingException(message) Cloud service only.

AuthorizationProvider

class borneo.AuthorizationProvider
Bases: object

AuthorizationProvider is a callback interface used by the driver to obtain an authorization string for a request.
It is called when an authorization string is required. In general applications need not implement this interface,
instead using the default mechanisms.

Instances of this interface must be reentrant and thread-safe.

Methods Summary

close() Closes the authorization provider and releases any
resources it may be using.

get_authorization_string([request]) Returns an authorization string for the specified re-
quest.

get_logger() Returns the logger of this provider if set, None if not.
set_logger(logger) Sets a logger instance for this provider.

Methods Documentation

close()
Closes the authorization provider and releases any resources it may be using.

get_authorization_string(request=None)
Returns an authorization string for the specified request. The string is sent to the server in the request and
is used for authorization. Authorization information can be request-dependent.

Parameters request (Request) – the request to be issued. This is an instance of
Request().

Returns a string indicating that the application is authorized to perform the request.

Return type str

get_logger()
Returns the logger of this provider if set, None if not.

Returns the logger.

Return type Logger or None

set_logger(logger)
Sets a logger instance for this provider. If not set, the logger associated with the driver is used.

Parameters logger (Logger) – the logger to use.

24 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns self.

Raises IllegalArgumentException – raises the exception if logger is not an instance of
Logger.

BatchOperationNumberLimitException

exception borneo.BatchOperationNumberLimitException(message)
Cloud service only.

Thrown to indicate that the number of operations included in NoSQLHandle.write_multiple() opera-
tion exceeds the system defined limit.

Consistency

class borneo.Consistency
Bases: object

Set the consistency for read requests.

Attributes Summary

ABSOLUTE Set Consistency.ABSOLUTE to use absolute consis-
tency for read requests.

EVENTUAL Set Consistency.EVENTUAL to use eventual consis-
tency for read requests.

Attributes Documentation

ABSOLUTE = 0
Set Consistency.ABSOLUTE to use absolute consistency for read requests.

EVENTUAL = 1
Set Consistency.EVENTUAL to use eventual consistency for read requests. This is the default value for
operations.

Durability

class borneo.Durability(master_sync, replica_sync, replica_ack)
Bases: object

Durability defines the durability characteristics associated with a standalone write (put or update) operation.

This is currently only supported in On-Prem installations. It is ignored in the cloud service.

The overall durability is a function of the SYNC_POLICY and ACK_POLICY in effect for the Master, and the
SYNC_POLICY in effect for each Replica.

SYNC_POLICY represents policies to be used when committing a transaction. High levels of synchronization
offer a greater guarantee that the transaction is persistent to disk, but trade that off for lower performance. The
possible SYNC_POLICY values are:

• SYNC writes and synchronously flushes the log on transaction commit. Transactions exhibit all the ACID
(atomicity, consistency, isolation, and durability) properties.

4.1. borneo Package 25

NoSQL Database Python SDK Documentation

• NO_SYNC does not write or synchronously flush the log on transaction commit. Transactions exhibit the
ACI (atomicity, consistency, and isolation) properties, but not D (durability); that is, database integrity
will be maintained, but if the application or system fails, it is possible some number of the most recently
committed transactions may be undone during recovery. The number of transactions at risk is governed by
how many log updates can fit into the log buffer, how often the operating system flushes dirty buffers to
disk, and how often log checkpoints occur.

• WRITE_NO_SYNC writes but does not synchronously flush the log on transaction commit. Transactions
exhibit the ACI (atomicity, consistency, and isolation) properties, but not D (durability); that is, database
integrity will be maintained, but if the operating system fails, it is possible some number of the most
recently committed transactions may be undone during recovery. The number of transactions at risk is
governed by how often the operating system flushes dirty buffers to disk, and how often log checkpoints
occur.

REPLICA_ACK_POLICY defines the policy for how replicated commits are handled. A replicated environ-
ment makes it possible to increase an application’s transaction commit guarantees by committing changes to its
replicas on the network.

Possible REPLICA_ACK_POLICY values include:

• ALL defines that all replicas must acknowledge that they have committed the transaction. This policy
should be selected only if your replication group has a small number of replicas, and those replicas are on
extremely reliable networks and servers.

• NONE defines that no transaction commit acknowledgments are required and the master will never wait
for replica acknowledgments. In this case, transaction durability is determined entirely by the type of
commit that is being performed on the master.

• SIMPLE_MAJORITY defines that a simple majority of replicas must acknowledge that they have commit-
ted the transaction. This acknowledgment policy, in conjunction with an election policy which requires at
least a simple majority, ensures that the changes made by the transaction remains durable if a new election
is held.

The default Durability is configured in the proxy server with which this SDK communicates. It is an optional
startup parameter.

Methods Documentation

__init__(master_sync, replica_sync, replica_ack)
Create a Durability object

Parameters

• master_sync (SYNC_POLICY) – the master sync policy

• replica_sync (SYNC_POLICY) – the replica sync policy

• replica_ack (REPLICA_ACK_POLICY) – the replica ack policy

Attributes Documentation

REPLICA_ACK_POLICY
REPLICA_ACK_POLICY

alias of Enum

SYNC_POLICY
SYNC_POLICY

alias of Enum

26 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

DefaultRetryHandler

class borneo.DefaultRetryHandler(retries=10, delay_s=0)
Bases: borneo.config.RetryHandler

Default retry handler. It’s a default instance of RetryHandler This may be extended by clients for specific
use cases.

The default retry handler decides when and for how long retries will be attempted. See RetryHandler for
more information on retry handlers.

Methods Summary

delay(request, num_retried, re) Delay (sleep) during retry cycle.
do_retry(request, num_retried, re) Decide whether to retry or not.
get_num_retries() Returns the number of retries that this handler in-

stance will allow before the exception is thrown to
the application.

Methods Documentation

delay(request, num_retried, re)
Delay (sleep) during retry cycle. If delay_ms is non-zero, use it. Otherwise, use an incremental backoff
algorithm to compute the time of delay.

do_retry(request, num_retried, re)
Decide whether to retry or not. Default behavior is to not retry OperationThrottlingException because the
retry time is likely much longer than normal because they are DDL operations. In addition, not retry any re-
quests that should not be retried: TableRequest, ListTablesRequest, GetTableRequest, TableUsageRequest,
GetIndexesRequest.

get_num_retries()
Returns the number of retries that this handler instance will allow before the exception is thrown to the
application.

Returns the max number of retries.

Return type int

DeleteRequest

class borneo.DeleteRequest
Bases: borneo.operations.WriteRequest

Represents the input to a NoSQLHandle.delete() operation.

This request can be used to perform unconditional and conditional deletes:

• Delete any existing row. This is the default.

• Succeed only if the row exists and and its Version matches a specific Version. Use
set_match_version() for this case. Using this option in conjunction with using
set_return_row() allows information about the existing row to be returned if the operation
fails because of a version mismatch. On success no information is returned.

Using set_return_row() may incur additional cost and affect operation latency.

4.1. borneo Package 27

NoSQL Database Python SDK Documentation

The table name and key are required parameters. On a successful operation DeleteResult.
get_success() returns True. Additional information, such as previous row information, may be available
in DeleteResult.

Methods Summary

get_compartment() Cloud service only.
get_durability() On-premise only.
get_key() Returns the key of the row to be deleted.
get_match_version() Returns the Version used for a match on a condi-

tional delete.
get_return_row() Returns whether information about the existing row

should be returned on failure because of a version
mismatch.

get_table_name() Returns the table name to use for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_compartment(compartment) Cloud service only.
set_durability(durability) On-premise only.
set_key(key) Sets the key to use for the delete operation.
set_key_from_json(json_key) Sets the key to use for the delete operation based on

a JSON string.
set_match_version(version) Sets the Version to use for a conditional delete op-

eration.
set_return_row(return_row) Sets whether information about the existing row

should be returned on failure because of a version
mismatch.

set_table_name(table_name) Sets the table name to use for the operation.
set_timeout(timeout_ms) Sets the optional request timeout value, in millisec-

onds.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_durability()
On-premise only. Gets the durability to use for the operation or None if not set :returns: the Durability
:versionadded: 5.3.0

get_key()
Returns the key of the row to be deleted.

Returns the key value, or None if not set.

Return type dict

get_match_version()
Returns the Version used for a match on a conditional delete.

28 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns the Version or None if not set.

Return type Version

get_return_row()
Returns whether information about the existing row should be returned on failure because of a version
mismatch.

Returns True if information should be returned.

Return type bool

get_table_name()
Returns the table name to use for the operation.

Returns the table name, or None if not set.

Returns str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_durability(durability)
On-premise only. Sets the durability to use for the operation.

Parameters durability (Durability) – the Durability to use

Returns self.

Raises IllegalArgumentException – raises the exception if Durability is not valid

Versionadded 5.3.0

set_key(key)
Sets the key to use for the delete operation. This is a required field.

Parameters key (dict) – the key value.

Returns self.

Raises IllegalArgumentException – raises the exception if key is not a dictionary.

4.1. borneo Package 29

NoSQL Database Python SDK Documentation

set_key_from_json(json_key)
Sets the key to use for the delete operation based on a JSON string. The string is parsed for validity and
stored internally as a dict.

Parameters json_key (str) – the key as a JSON string.

Returns self.

Raises IllegalArgumentException – raises the exception if json_key is not a string.

set_match_version(version)
Sets the Version to use for a conditional delete operation. The Version is usually obtained from
GetResult.get_version() or other method that returns a Version. When set, the delete opera-
tion will succeed only if the row exists and its Version matches the one specified. Using this option will
incur additional cost.

Parameters version (Version) – the Version to match.

Returns self.

Raises IllegalArgumentException – raises the exception if version is not an instance of
Version.

set_return_row(return_row)
Sets whether information about the existing row should be returned on failure because of a version mis-
match. If a match version has not been set via set_match_version() this parameter is ignored and
there will be no return information. This parameter is optional and defaults to False. It’s use may incur
additional cost.

Parameters return_row (bool) – set to True if information should be returned.

Returns self.

Raises IllegalArgumentException – raises the exception if return_row is not True or
False.

set_table_name(table_name)
Sets the table name to use for the operation. This is a required parameter.

Parameters table_name (str) – the table name.

Returns self.

Raises IllegalArgumentException – raises the exception if table_name is not a string.

set_timeout(timeout_ms)
Sets the optional request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

DeleteResult

class borneo.DeleteResult
Bases: borneo.operations.WriteResult

Represents the result of a NoSQLHandle.delete() operation.

30 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

If the delete succeeded get_success() returns True. Information about the existing row on failure may
be available using get_existing_value() and get_existing_version(), depending on the use of
DeleteRequest.set_return_row().

Methods Summary

get_existing_modification_time() Returns the existing row modification time if avail-
able.

get_existing_value() Returns the existing row value if available.
get_existing_version() Returns the existing row Version if available.
get_read_kb() Returns the read throughput consumed by this oper-

ation, in KBytes.
get_read_units() Returns the read throughput consumed by this oper-

ation, in read units.
get_success() Returns True if the delete operation succeeded.
get_write_kb() Returns the write throughput consumed by this oper-

ation, in KBytes.
get_write_units() Returns the write throughput consumed by this oper-

ation, in write units.

Methods Documentation

get_existing_modification_time()
Returns the existing row modification time if available. It will be available if the target row exists and the
operation failed because of a Version mismatch and the corresponding DeleteRequest the method
DeleteRequest.set_return_row() was called with a True value.

Returns the modification time in milliseconds since January 1, 1970

Return type int

Versionadded 5.3.0

get_existing_value()
Returns the existing row value if available. It will be available if the target row exists and the op-
eration failed because of a Version mismatch and the corresponding DeleteRequest the method
DeleteRequest.set_return_row() was called with a True value.

Returns the value.

Return type dict

get_existing_version()
Returns the existing row Version if available. It will be available if the target row exists and the op-
eration failed because of a Version mismatch and the corresponding DeleteRequest the method
DeleteRequest.set_return_row() was called with a True value.

Returns the version.

Return type Version

get_read_kb()
Returns the read throughput consumed by this operation, in KBytes. This is the actual amount of data read
by the operation. The number of read units consumed is returned by get_read_units() which may
be a larger number because this was an update operation.

Returns the read KBytes consumed.

4.1. borneo Package 31

NoSQL Database Python SDK Documentation

Return type int

get_read_units()
Returns the read throughput consumed by this operation, in read units. This number may be larger than
that returned by get_read_kb() because it was an update operation.

Returns the read units consumed.

Return type int

get_success()
Returns True if the delete operation succeeded.

Returns True if the operation succeeded.

Return type bool

get_write_kb()
Returns the write throughput consumed by this operation, in KBytes.

Returns the write KBytes consumed.

Return type int

get_write_units()
Returns the write throughput consumed by this operation, in write units.

Returns the write units consumed.

Return type int

FieldRange

class borneo.FieldRange(field_path)
Bases: object

FieldRange defines a range of values to be used in a NoSQLHandle.multi_delete() operation, as speci-
fied in MultiDeleteRequest.set_range(). FieldRange is only relevant if a primary key has multiple
components because all values in the range must share the same shard key.

FieldRange is used as the least significant component in a partially specified key value in order to create a value
range for an operation that returns multiple rows or keys. The data types supported by FieldRange are limited
to the atomic types which are valid for primary keys.

The least significant component of a key is the first component of the key that is not fully specified. For example,
if the primary key for a table is defined as the tuple (a, b, c), a FieldRange can be specified for “a” if the primary
key supplied is empty. A FieldRange can be specified for “b” if the primary key supplied to the operation has a
concrete value for “a” but not for “b” or “c”.

This object is used to scope a NoSQLHandle.multi_delete() operation. The field_path specified must
name a field in a table’s primary key. The values used must be of the same type and that type must match the
type of the field specified.

Validation of this object is performed when is it used in an operation. Validation includes verifying that the field
is in the required key and, in the case of a composite key, that the field is in the proper order relative to the key
used in the operation.

Parameters field_path (str) – the path to the field used in the range.

Raises IllegalArgumentException – raises the exception if field_path is not a string.

32 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Methods Summary

get_end() Returns the field value that defines upper bound of
the range, or None if no upper bound is enforced.

get_end_inclusive() Returns whether end is included in the range, i.e.,
end is greater than or equal to the last field value in
the range.

get_field_path() Returns the name for the field used in the range.
get_start() Returns the field value that defines lower bound of

the range, or None if no lower bound is enforced.
get_start_inclusive() Returns whether start is included in the range, i.e.,

start is less than or equal to the first field value in the
range.

set_end(value, is_inclusive) Sets the end value of the range to the specified value.
set_start(value, is_inclusive) Sets the start value of the range to the specified value.

Methods Documentation

get_end()
Returns the field value that defines upper bound of the range, or None if no upper bound is enforced.

Returns the end field value.

get_end_inclusive()
Returns whether end is included in the range, i.e., end is greater than or equal to the last field value in the
range. This value is valid only if the end value is not None.

Returns True if the end value is inclusive.

Return type bool

get_field_path()
Returns the name for the field used in the range.

Returns the name of the field.

Return type str

get_start()
Returns the field value that defines lower bound of the range, or None if no lower bound is enforced.

Returns the start field value.

get_start_inclusive()
Returns whether start is included in the range, i.e., start is less than or equal to the first field value in the
range. This value is valid only if the start value is not None.

Returns True if the start value is inclusive.

Return type bool

set_end(value, is_inclusive)
Sets the end value of the range to the specified value.

Parameters

• value (any) – the value to set.

• is_inclusive (bool) – set to True if the range is inclusive of the value, False if it is
exclusive.

4.1. borneo Package 33

NoSQL Database Python SDK Documentation

Returns self.

Raises IllegalArgumentException – raises the exception if parameters are not expected
type.

set_start(value, is_inclusive)
Sets the start value of the range to the specified value.

Parameters

• value (any) – the value to set.

• is_inclusive (bool) – set to True if the range is inclusive of the value, False if it is
exclusive.

Returns self.

Raises IllegalArgumentException – raises the exception if parameters are not expected
type.

GetIndexesRequest

class borneo.GetIndexesRequest
Bases: borneo.operations.Request

Represents the argument of a NoSQLHandle.get_indexes() operation which returns the information of
a specific index or all indexes of the specified table, as returned in GetIndexesResult.

The table name is a required parameter.

Methods Summary

get_compartment() Cloud service only.
get_index_name() Gets the index name to use for the request.
get_table_name() Returns the table name to use for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_compartment(compartment) Cloud service only.
set_index_name(index_name) Sets the index name to use for the request.
set_table_name(table_name) Sets the table name to use for the request.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_index_name()
Gets the index name to use for the request.

Returns the index name.

Return type str

34 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

get_table_name()
Returns the table name to use for the operation.

Returns the table name, or None if not set.

Returns str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_index_name(index_name)
Sets the index name to use for the request. If not set, this request will return all indexes of the table.

Parameters index_name (str) – the index name.

Returns self.

Raises IllegalArgumentException – raises the exception if index_name is not a string.

set_table_name(table_name)
Sets the table name to use for the request.

Parameters table_name (str) – the table name. This is a required parameter.

Returns self.

Raises IllegalArgumentException – raises the exception if table_name is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

4.1. borneo Package 35

NoSQL Database Python SDK Documentation

GetIndexesResult

class borneo.GetIndexesResult
Bases: borneo.operations.Result

Represents the result of a NoSQLHandle.get_indexes() operation.

On a successful operation the index information is returned in a list of IndexInfo.

Methods Summary

get_indexes() Returns the list of index information returned by the
operation.

Methods Documentation

get_indexes()
Returns the list of index information returned by the operation.

Returns the indexes information.

Return type list(IndexInfo)

GetRequest

class borneo.GetRequest
Bases: borneo.operations.ReadRequest

Represents the input to a NoSQLHandle.get() operation which returns a single row based on the specified
key.

The table name and key are required parameters.

Methods Summary

get_compartment() Cloud service only.
get_key() Returns the primary key used for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_consistency(consistency) Sets the consistency to use for the operation.
set_compartment(compartment) Cloud service only.
set_key(key) Sets the primary key used for the get operation.
set_key_from_json(json_key) Sets the key to use for the get operation based on a

JSON string.
set_table_name(table_name) Sets the table name to use for the operation.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

36 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_key()
Returns the primary key used for the operation. This is a required parameter.

Returns the key.

Return type dict

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_consistency(consistency)
Sets the consistency to use for the operation. This parameter is optional and if not set the default consis-
tency configured for the NoSQLHandle is used.

Parameters consistency (Consistency) – the consistency.

Returns self.

Raises IllegalArgumentException – raises the exception if consistency is not Consis-
tency.ABSOLUTE or Consistency.EVENTUAL.

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_key(key)
Sets the primary key used for the get operation. This is a required parameter.

Parameters key (dict) – the primary key.

Returns self.

Raises IllegalArgumentException – raises the exception if key is not a dictionary.

set_key_from_json(json_key)
Sets the key to use for the get operation based on a JSON string.

Parameters json_key (str) – the key as a JSON string.

Returns self.

Raises IllegalArgumentException – raises the exception if json_key is not a string.

4.1. borneo Package 37

NoSQL Database Python SDK Documentation

set_table_name(table_name)
Sets the table name to use for the operation. This is a required parameter.

Parameters table_name (str) – the table name.

Returns self.

Raises IllegalArgumentException – raises the exception if table_name is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

GetResult

class borneo.GetResult
Bases: borneo.operations.Result

Represents the result of a NoSQLHandle.get() operation.

On a successful operation the value of the row is available using get_value() and the other state available
in this class is valid. On failure that value is None and other state, other than consumed capacity, is undefined.

Methods Summary

get_expiration_time() Returns the expiration time of the row.
get_read_kb() Returns the read throughput consumed by this oper-

ation, in KBytes.
get_read_units() Returns the read throughput consumed by this oper-

ation, in read units.
get_value() Returns the value of the returned row, or None if the

row does not exist.
get_version() Returns the Version of the row if the operation

was successful, or None if the row does not exist.
get_write_kb() Returns the write throughput consumed by this oper-

ation, in KBytes.
get_write_units() Returns the write throughput consumed by this oper-

ation, in write units.

Methods Documentation

get_expiration_time()
Returns the expiration time of the row. A zero value indicates that the row does not expire. This value is
valid only if the operation successfully returned a row (get_value() returns non-none).

Returns the expiration time in milliseconds since January 1, 1970, or zero if the row never
expires or the row does not exist.

Return type int

38 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

get_read_kb()
Returns the read throughput consumed by this operation, in KBytes. This is the actual amount of data read
by the operation. The number of read units consumed is returned by get_read_units() which may
be a larger number if the operation used Consistency.ABSOLUTE.

Returns the read KBytes consumed.

Return type int

get_read_units()
Returns the read throughput consumed by this operation, in read units. This number may be larger than
that returned by get_read_kb() if the operation used Consistency.ABSOLUTE.

Returns the read units consumed.

Return type int

get_value()
Returns the value of the returned row, or None if the row does not exist.

Returns the value of the row, or None if it does not exist.

Return type dict

get_version()
Returns the Version of the row if the operation was successful, or None if the row does not exist.

Returns the version of the row, or None if the row does not exist.

Return type Version

get_write_kb()
Returns the write throughput consumed by this operation, in KBytes.

Returns the write KBytes consumed.

Return type int

get_write_units()
Returns the write throughput consumed by this operation, in write units.

Returns the write units consumed.

Return type int

GetTableRequest

class borneo.GetTableRequest
Bases: borneo.operations.Request

Represents the argument of a NoSQLHandle.get_table() operation which returns static information as-
sociated with a table, as returned in TableResult. This information only changes in response to a change in
table schema or a change in provisioned throughput or capacity for the table.

The table name is a required parameter.

Methods Summary

get_compartment() Cloud service only.
Continued on next page

4.1. borneo Package 39

NoSQL Database Python SDK Documentation

Table 12 – continued from previous page
get_operation_id() Returns the operation id to use for the request, None

if not set.
get_table_name() Returns the table name to use for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_compartment(compartment) Cloud service only.
set_operation_id(operation_id) Sets the operation id to use for the request.
set_table_name(table_name) Sets the table name to use for the request.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_operation_id()
Returns the operation id to use for the request, None if not set.

Returns the operation id.

Return type str

get_table_name()
Returns the table name to use for the operation.

Returns the table name, or None if not set.

Returns str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

40 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

set_operation_id(operation_id)
Sets the operation id to use for the request. The operation id can be obtained via TableResult.
get_operation_id(). This parameter is optional. If non-none, it represents an asynchronous table
operation that may be in progress. It is used to examine the result of the operation and if the operation
has failed an exception will be thrown in response to a NoSQLHandle.get_table() operation. If the
operation is in progress or has completed successfully, the state of the table is returned.

Parameters operation_id (str) – the operation id. This is optional.

Returns self.

Raises IllegalArgumentException – raises the exception if operation_id is a negative
number.

set_table_name(table_name)
Sets the table name to use for the request.

Parameters table_name (str) – the table name. This is a required parameter.

Returns self.

Raises IllegalArgumentException – raises the exception if table_name is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

IllegalArgumentException

exception borneo.IllegalArgumentException(message=None, cause=None)
Exception class that is used when an invalid argument was passed, this could mean that the type is not the
expected or the value is not valid for the specific case.

IllegalStateException

exception borneo.IllegalStateException(message=None, cause=None)
Exception that is thrown when a method has been invoked at an illegal or inappropriate time.

IndexExistsException

exception borneo.IndexExistsException(message)
The operation attempted to create an index for a table but the named index already exists.

IndexInfo

class borneo.IndexInfo(index_name, field_names, field_types=None)
Bases: object

IndexInfo represents the information about a single index including its name, field names and field types. In-
stances of this class are returned in GetIndexesResult.

4.1. borneo Package 41

NoSQL Database Python SDK Documentation

Methods Summary

get_field_names() Returns the list of field names that define the index.
get_index_name() Returns the name of the index.

Methods Documentation

get_field_names()
Returns the list of field names that define the index.

Returns the field names.

Return type list(str)

get_index_name()
Returns the name of the index.

Returns the index name.

Return type str

IndexNotFoundException

exception borneo.IndexNotFoundException(message)
The operation attempted to access a index that does not exist or is not in a visible state.

InvalidAuthorizationException

exception borneo.InvalidAuthorizationException(message)
The exception is thrown if the application presents an invalid authorization string in a request.

ListTablesRequest

class borneo.ListTablesRequest
Bases: borneo.operations.Request

Represents the argument of a NoSQLHandle.list_tables() operation which lists all available tables
associated with the identity associated with the handle used for the operation. If the list is large it can be paged
by using the start_index and limit parameters. The list is returned in a simple array in ListTablesResult.
Names are returned sorted in alphabetical order in order to facilitate paging.

Methods Summary

get_compartment() Cloud service only.
get_limit() Returns the maximum number of table names to re-

turn in the operation.
get_namespace() On-premise only.
get_start_index() Returns the index to use to start returning table

names.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
Continued on next page

42 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 14 – continued from previous page
set_compartment(compartment) Cloud service only.
set_limit(limit) Sets the maximum number of table names to return

in the operation.
set_namespace(namespace) On-premise only.
set_start_index(start_index) Sets the index to use to start returning table names.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_limit()
Returns the maximum number of table names to return in the operation. If not set (0) there is no
application-imposed limit.

Returns the maximum number of tables to return in a single request.

Return type int

get_namespace()
On-premise only.

Returns the namespace to use for the list or None if not set.

Returns the namespace.

Return type str

get_start_index()
Returns the index to use to start returning table names. This is related to the ListTablesResult.
get_last_returned_index() from a previous request and can be used to page table names. If not
set, the list starts at index 0.

Returns the start index.

Return type int

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

4.1. borneo Package 43

NoSQL Database Python SDK Documentation

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_limit(limit)
Sets the maximum number of table names to return in the operation. If not set (0) there is no limit.

Parameters limit (int) – the maximum number of tables.

Returns self.

Raises IllegalArgumentException – raises the exception if limit is a negative number.

set_namespace(namespace)
On-premise only.

Sets the namespace to use for the list. If not set, all tables accessible to the user will be returned. If set,
only tables in the namespace provided are returned.

Parameters namespace (str) – the namespace to use.

Returns self.

Raises IllegalArgumentException – raises the exception if namespace is not a string.

set_start_index(start_index)
Sets the index to use to start returning table names. This is related to the ListTablesResult.
get_last_returned_index() from a previous request and can be used to page table names. If
not set, the list starts at index 0.

Parameters start_index (int) – the start index.

Returns self.

Raises IllegalArgumentException – raises the exception if start_index is a negative
number.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

ListTablesResult

class borneo.ListTablesResult
Bases: borneo.operations.Result

Represents the result of a NoSQLHandle.list_tables() operation.

On a successful operation the table names are available as well as the index of the last returned table. Tables are
returned in a list, sorted alphabetically.

44 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Methods Summary

get_last_returned_index() Returns the index of the last table name returned.
get_tables() Returns the array of table names returned by the op-

eration.

Methods Documentation

get_last_returned_index()
Returns the index of the last table name returned. This can be provided to ListTablesRequest to be
used as a starting point for listing tables.

Returns the index.

Return type int

Versionadded 5.4.0

get_tables()
Returns the array of table names returned by the operation.

Returns the table names.

Return type list(str)

MultiDeleteRequest

class borneo.MultiDeleteRequest
Bases: borneo.operations.Request

Represents the input to a NoSQLHandle.multi_delete() operation which can be used to delete a range
of values that match the primary key and range provided.

A range is specified using a partial key plus a range based on the portion of the key that is not provided. For
example if a table’s primary key is <id, timestamp>; and the its shard key is the id, it is possible to delete a range
of timestamp values for a specific id by providing an id but no timestamp in the value used for set_key() and
providing a range of timestamp values in the FieldRange used in set_range().

Because this operation can exceed the maximum amount of data modified in a single operation a continuation
key can be used to continue the operation. The continuation key is obtained from MultiDeleteResult.
get_continuation_key() and set in a new request using set_continuation_key(). Operations
with a continuation key still require the primary key.

The table name and key are required parameters.

Methods Summary

get_compartment() Cloud service only.
get_continuation_key() Returns the continuation key if set.
get_durability() On-premise only.
get_key() Returns the key to be used for the operation.
get_max_write_kb() Returns the limit on the total KB write during this

operation.
Continued on next page

4.1. borneo Package 45

NoSQL Database Python SDK Documentation

Table 16 – continued from previous page
get_range() Returns the FieldRange to be used for the opera-

tion if set.
get_table_name() Returns the table name to use for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_compartment(compartment) Cloud service only.
set_continuation_key(continuation_key) Sets the continuation key.
set_durability(durability) On-premise only.
set_key(key) Sets the key to be used for the operation.
set_max_write_kb(max_write_kb) Sets the limit on the total KB write during this oper-

ation, 0 means no application-defined limit.
set_range(field_range) Sets the FieldRange to be used for the operation.
set_table_name(table_name) Sets the table name to use for the operation.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_continuation_key()
Returns the continuation key if set.

Returns the continuation key.

Return type bytearray

get_durability()
On-premise only. Gets the durability to use for the operation or None if not set :returns: the Durability
:versionadded: 5.3.0

get_key()
Returns the key to be used for the operation.

Returns the key.

Return type dict

get_max_write_kb()
Returns the limit on the total KB write during this operation. If not set by the application this value will
be 0 which means the default system limit is used.

Returns the limit, or 0 if not set.

Return type int

get_range()
Returns the FieldRange to be used for the operation if set.

Returns the range, None if no range is to be used.

Return type FieldRange

get_table_name()
Returns the table name to use for the operation.

46 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns the table name, or None if not set.

Returns str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_continuation_key(continuation_key)
Sets the continuation key.

Parameters continuation_key (bytearray) – the key which should have been obtained
from MultiDeleteResult.get_continuation_key().

Returns self.

Raises IllegalArgumentException – raises the exception if continuation_key is not a
bytearray.

set_durability(durability)
On-premise only. Sets the durability to use for the operation.

Parameters durability (Durability) – the Durability to use

Returns self.

Raises IllegalArgumentException – raises the exception if Durability is not valid

Versionadded 5.3.0

set_key(key)
Sets the key to be used for the operation. This is a required parameter and must completely specify the
target table’s shard key.

Parameters key (dict) – the key.

Returns self.

Raises IllegalArgumentException – raises the exception if key is not a dictionary.

set_max_write_kb(max_write_kb)
Sets the limit on the total KB write during this operation, 0 means no application-defined limit. This value
can only reduce the system defined limit.

4.1. borneo Package 47

NoSQL Database Python SDK Documentation

Parameters max_write_kb (int) – the limit in terms of number of KB write during this
operation.

Returns self.

Raises IllegalArgumentException – raises the exception if the max_write_kb value is
less than 0.

set_range(field_range)
Sets the FieldRange to be used for the operation. This parameter is optional, but required to delete a
specific range of rows.

Parameters field_range (FieldRange) – the field range.

Returns self.

Raises IllegalArgumentException – raises the exception if field_range is not an in-
stance of FieldRange.

set_table_name(table_name)
Sets the table name to use for the operation. This is a required parameter.

Parameters table_name (str) – the table name.

Returns self.

Raises IllegalArgumentException – raises the exception if table_name is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

MultiDeleteResult

class borneo.MultiDeleteResult
Bases: borneo.operations.Result

Represents the result of a NoSQLHandle.multi_delete() operation.

On a successful operation the number of rows deleted is available using get_num_deletions(). There is
a limit to the amount of data consumed by a single call. If there are still more rows to delete, the continuation
key can be get using get_continuation_key().

Methods Summary

get_continuation_key() Returns the continuation key where the next Multi-
Delete request resume from.

get_num_deletions() Returns the number of rows deleted from the table.
get_read_kb() Returns the read throughput consumed by this oper-

ation, in KBytes.
get_read_units() Returns the read throughput consumed by this oper-

ation, in read units.
Continued on next page

48 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 17 – continued from previous page
get_write_kb() Returns the write throughput consumed by this oper-

ation, in KBytes.
get_write_units() Returns the write throughput consumed by this oper-

ation, in write units.

Methods Documentation

get_continuation_key()
Returns the continuation key where the next MultiDelete request resume from.

Returns the continuation key, or None if there are no more rows to delete.

Return type bytearray

get_num_deletions()
Returns the number of rows deleted from the table.

Returns the number of rows deleted.

Return type int

get_read_kb()
Returns the read throughput consumed by this operation, in KBytes. This is the actual amount of data read
by the operation. The number of read units consumed is returned by get_read_units() which may
be a larger number because this was an update operation.

Returns the read KBytes consumed.

Return type int

get_read_units()
Returns the read throughput consumed by this operation, in read units. This number may be larger than
that returned by get_read_kb() because it was an update operation.

Returns the read units consumed.

Return type int

get_write_kb()
Returns the write throughput consumed by this operation, in KBytes.

Returns the write KBytes consumed.

Return type int

get_write_units()
Returns the write throughput consumed by this operation, in write units.

Returns the write units consumed.

Return type int

NoSQLException

exception borneo.NoSQLException(message, cause=None)
A base class for most exceptions thrown by the NoSQL driver.

4.1. borneo Package 49

NoSQL Database Python SDK Documentation

NoSQLHandle

class borneo.NoSQLHandle(config)
Bases: object

NoSQLHandle is a handle that can be used to access Oracle NoSQL tables. To create a connection represented
by NoSQLHandle, request an instance using NoSQLHandleConfig, which allows an application to specify
default values and other configuration information to be used by the handle.

The same interface is available to both users of the Oracle NoSQL Database Cloud Service and the on-premise
Oracle NoSQL Database; however, some methods and/or parameters are specific to each environment. The
documentation has notes about whether a class, method, or parameter is environment-specific. Unless otherwise
noted they are applicable to both environments.

A handle has memory and network resources associated with it. Consequently, the close() method must be
invoked to free up the resources when the application is done using the handle. To minimize network activity
as well as resource allocation and deallocation overheads, it’s best to avoid repeated creation and closing of
handles. For example, creating and closing a handle around each operation, would incur large resource allocation
overheads resulting in poor application performance.

A handle permits concurrent operations, so a single handle is sufficient to access tables in a multi-threaded
application. The creation of multiple handles incurs additional resource overheads without providing any per-
formance benefit.

With the exception of close() the operations on this interface follow a similar pattern. They accept a Request
object containing parameters, both required and optional. They return a Result object containing results. Oper-
ation failures throw exceptions. Unique subclasses of Request and Result exist for most operations, containing
information specific to the operation. All of these operations result in remote calls across a network.

All Request instances support specification of parameters for the operation as well as the ability to override
default parameters which may have been specified in NoSQLHandleConfig, such as request timeouts, etc.

Objects returned by methods of this interface can only be used safely by one thread at a time unless synchronized
externally. Request objects are not copied and must not be modified by the application while a method on this
interface is using them.

For Error and Exception Handling, on success all methods in this interface return Result objects. Errors
are thrown as exceptions. Exceptions that may be retried may succeed on retry. These are instances of
RetryableException. Exceptions that may not be retried and if retried, will fail again. Exceptions
that may be retried return True for RetryableException.ok_to_retry() while those that may not
will return False. Examples of retryable exceptions are those which indicate resource consumption viola-
tions such as OperationThrottlingException. Examples of exceptions that should not be retried
are IllegalArgumentException, TableNotFoundException, and any other exception indicating
a syntactic or semantic error.

Instances of NoSQLHandle are thread-safe and expected to be shared among threads.

Parameters config (NoSQLHandleConfig) – an instance of NoSQLHandleConfig.

Raises IllegalArgumentException – raises the exception if config is not an instance of
NoSQLHandleConfig.

Methods Summary

close() Close the NoSQLHandle.
delete(request) Deletes a row from a table.

Continued on next page

50 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 18 – continued from previous page
do_system_request(statement[, timeout_ms,
. . .])

On-premise only.

do_table_request(request, timeout_ms, . . .) A convenience method that performs a TableRequest
and waits for completion of the operation.

get(request) Gets the row associated with a primary key.
get_client()
get_indexes(request) Returns information about and index, or indexes on

a table.
get_stats_control()
get_table(request) Gets static information about the specified table in-

cluding its state, provisioned throughput and capac-
ity and schema.

get_table_usage(request) Cloud service only.
list_namespaces() On-premise only.
list_roles() On-premise only.
list_tables(request) Lists tables, returning table names.
list_users() On-premise only.
multi_delete(request) Deletes multiple rows from a table in an atomic op-

eration.
prepare(request) Prepares a query for execution and reuse.
put(request) Puts a row into a table.
query(request) Queries a table based on the query statement speci-

fied in the QueryRequest.
query_iterable(request) Queries a table based on the query statement speci-

fied in the QueryRequest.
system_request(request) On-premise only.
system_status(request) On-premise only.
table_request(request) Performs an operation on a table.
write_multiple(request) Executes a sequence of operations associated with a

table that share the same shard key portion of their
primary keys, all the specified operations are exe-
cuted within the scope of a single transaction.

Methods Documentation

close()
Close the NoSQLHandle.

delete(request)
Deletes a row from a table. The row is identified using a primary key value supplied in
DeleteRequest.set_key().

By default a delete operation is unconditional and will succeed if the specified row exists. Delete operations
can be made conditional based on whether the Version of an existing row matches that supplied by
DeleteRequest.set_match_version().

It is also possible, on failure, to return information about the existing row. The row, including it’s
Version can be optionally returned if a delete operation fails because of a Version mismatch. The
existing row information will only be returned if DeleteRequest.set_return_row() is True and
the operation fails because DeleteRequest.set_match_version() is used and the operation fails
because the row exists and its version does not match. Use of DeleteRequest.set_return_row()
may result in additional consumed read capacity. If the operation is successful there will be no information
returned about the previous row.

4.1. borneo Package 51

NoSQL Database Python SDK Documentation

Parameters request (DeleteRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type DeleteResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
DeleteRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

do_system_request(statement, timeout_ms=30000, poll_interval_ms=1000)
On-premise only.

A convenience method that performs a SystemRequest and waits for completion of the op-
eration. This is the same as calling system_request() then calling SystemResult.
wait_for_completion(). If the operation fails an exception is thrown.

System requests are those related to namespaces and security and are generally independent of specific
tables. Examples of statements include

CREATE NAMESPACE mynamespace

CREATE USER some_user IDENTIFIED BY password

CREATE ROLE some_role

GRANT ROLE some_role TO USER some_user

Parameters

• statement (str) – the system statement for the operation.

• timeout_ms (int) – the amount of time to wait for completion, in milliseconds.

• poll_interval_ms (int) – the polling interval for the wait operation.

Returns the result of the system request.

Return type SystemResult

Raises

• IllegalArgumentException – raises the exception if any of the parameters are
invalid or required parameters are missing.

• RequestTimeoutException – raises the exception if the operation times out.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

do_table_request(request, timeout_ms, poll_interval_ms)
A convenience method that performs a TableRequest and waits for completion of the operation. This is
the same as calling table_request() then calling TableResult.wait_for_completion().
If the operation fails an exception is thrown. All parameters are required.

Parameters

• request (TableRequest) – the TableRequest to perform.

• timeout_ms (int) – the amount of time to wait for completion, in milliseconds.

• poll_interval_ms (int) – the polling interval for the wait operation.

52 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns the result of the table request.

Return type TableResult

Raises

• IllegalArgumentException – raises the exception if any of the parameters are
invalid or required parameters are missing.

• RequestTimeoutException – raises the exception if the operation times out.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

get(request)
Gets the row associated with a primary key. On success the value of the row is available using the
GetResult.get_value() operation. If there are no matching rows that method will return None.

The default consistency used for the operation is Consistency.EVENTUAL unless an explicit
value has been set using NoSQLHandleConfig.set_consistency() or GetRequest.
set_consistency(). Use of Consistency.ABSOLUTE may affect latency of the operation and may
result in additional cost for the operation.

Parameters request (GetRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type GetResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
GetRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

get_client()

get_indexes(request)
Returns information about and index, or indexes on a table. If no index name is specified in the
GetIndexesRequest, then information on all indexes is returned.

Parameters request (GetIndexesRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type GetIndexesResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
GetIndexesRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

get_stats_control()

get_table(request)
Gets static information about the specified table including its state, provisioned throughput and capacity
and schema. Dynamic information such as usage is obtained using get_table_usage(). Throughput,
capacity and usage information is only available when using the Cloud Service and will be None or not
defined on-premise.

Parameters request (GetTableRequest) – the input parameters for the operation.

4.1. borneo Package 53

NoSQL Database Python SDK Documentation

Returns the result of the operation.

Return type TableResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
GetTableRequest.

• TableNotFoundException – raises the exception if the specified table does not exist.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

get_table_usage(request)
Cloud service only.

Gets dynamic information about the specified table such as the current throughput usage. Usage infor-
mation is collected in time slices and returned in individual usage records. It is possible to specify a
time-based range of usage records using input parameters.

Parameters request (TableUsageRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type TableUsageResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
TableUsageRequest.

• TableNotFoundException – raises the exception if the specified table does not exist.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

list_namespaces()
On-premise only.

Returns the namespaces in a store as a list of string.

Returns the namespaces, or None if none are found.

Return type list(str)

list_roles()
On-premise only.

Returns the roles in a store as a list of string.

Returns the list of roles, or None if none are found.

Return type list(str)

list_tables(request)
Lists tables, returning table names. If further information about a specific table is desired the
get_table() interface may be used. If a given identity has access to a large number of tables the
list may be paged using input parameters.

Parameters request (ListTablesRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type ListTablesResult

Raises

54 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

• IllegalArgumentException – raises the exception if request is not an instance of
ListTablesRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

list_users()
On-premise only.

Returns the users in a store as a list of UserInfo.

Returns the list of users, or None if none are found.

Return type list(UserInfo)

multi_delete(request)
Deletes multiple rows from a table in an atomic operation. The key used may be partial but must contain
all of the fields that are in the shard key. A range may be specified to delete a range of keys.

Parameters request (MultiDeleteRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type MultiDeleteResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
MultiDeleteRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

prepare(request)
Prepares a query for execution and reuse. See query() for general information and restrictions. It is
recommended that prepared queries are used when the same query will run multiple times as execution
is much more efficient than starting with a query string every time. The query language and API support
query variables to assist with re-use.

Parameters request (PrepareRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type PrepareResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
PrepareRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

put(request)
Puts a row into a table. This method creates a new row or overwrites an existing row entirely. The value
used for the put is in the PutRequest object and must contain a complete primary key and all required
fields.

It is not possible to put part of a row. Any fields that are not provided will be defaulted, overwriting any
existing value. Fields that are not noneable or defaulted must be provided or an exception will be thrown.

By default a put operation is unconditional, but put operations can be conditional based on existence, or
not, of a previous value as well as conditional on the Version of the existing value.

4.1. borneo Package 55

NoSQL Database Python SDK Documentation

Use PutOption.IF_ABSENT to do a put only if there is no existing row that matches the primary
key.

Use PutOption.IF_PRESENT to do a put only if there is an existing row that matches the primary
key.

Use PutOption.IF_VERSION to do a put only if there is an existing row that matches the primary
key and its Version matches that provided.

It is also possible, on failure, to return information about the existing row. The row, including it’s
Version can be optionally returned if a put operation fails because of a Version mismatch or if the
operation fails because the row already exists. The existing row information will only be returned if
PutRequest.set_return_row() is True and one of the following occurs:

The PutOption.IF_ABSENT is used and the operation fails because the row already exists.

The PutOption.IF_VERSION is used and the operation fails because the row exists and its version
does not match.

Use of PutRequest.set_return_row() may result in additional consumed read capacity. If the
operation is successful there will be no information returned about the previous row.

Parameters request (PutRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type PutResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
PutRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

query(request)
Queries a table based on the query statement specified in the QueryRequest.

Queries that include a full shard key will execute much more efficiently than more distributed queries that
must go to multiple shards.

Table and system-style queries such as “CREATE TABLE . . . ” or “DROP TABLE . . . ” are not sup-
ported by these interfaces. Those operations must be performed using table_request() or
system_request() as appropriate.

The amount of data read by a single query request is limited by a system default and can be further lim-
ited using QueryRequest.set_max_read_kb(). This limits the amount of data read and not the
amount of data returned, which means that a query can return zero results but still have more data to
read. This situation is detected by checking if the QueryRequest is done using QueryRequest.
is_done(). For this reason queries should always operate in a loop, acquiring more results, until
QueryRequest.is_done() returns True, indicating that the query is done.

Parameters request (QueryRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type QueryResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
QueryRequest.

56 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

query_iterable(request)
Queries a table based on the query statement specified in the QueryRequest.

Queries that include a full shard key will execute much more efficiently than more distributed queries that
must go to multiple shards.

Table and system-style queries such as “CREATE TABLE . . . ” or “DROP TABLE . . . ” are not sup-
ported by these interfaces. Those operations must be performed using table_request() or
system_request() as appropriate.

The amount of data read by a single query request is limited by a system default and can be further
limited using QueryRequest.set_max_read_kb(). This limits the amount of data read and not
the amount of data returned.

Parameters request (QueryRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type QueryResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
QueryRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

Versionadded 5.3.6

system_request(request)
On-premise only.

Performs a system operation on the system, such as administrative operations that don’t affect a specific
table. For table-specific operations use table_request() or do_table_request().

Examples of statements in the SystemRequest passed to this method include:

CREATE NAMESPACE mynamespace

CREATE USER some_user IDENTIFIED BY password

CREATE ROLE some_role

GRANT ROLE some_role TO USER some_user

This operation is implicitly asynchronous. The caller must poll using methods on SystemResult to
determine when it has completed.

Parameters request (SystemRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type SystemResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
SystemRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

4.1. borneo Package 57

NoSQL Database Python SDK Documentation

system_status(request)
On-premise only.

Checks the status of an operation previously performed using system_request().

Parameters request (SystemStatusRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type SystemResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
SystemStatusRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

table_request(request)
Performs an operation on a table. This method is used for creating and dropping tables and indexes as well
as altering tables. Only one operation is allowed on a table at any one time.

This operation is implicitly asynchronous. The caller must poll using methods on TableResult to
determine when it has completed.

Parameters request (TableRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type TableResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
TableRequest.

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

write_multiple(request)
Executes a sequence of operations associated with a table that share the same shard key portion of their
primary keys, all the specified operations are executed within the scope of a single transaction.

There are some size-based limitations on this operation:

The max number of individual operations (put, delete) in a single WriteMultipleRequest is 50.

The total request size is limited to 25MB.

Parameters request (WriteMultipleRequest) – the input parameters for the operation.

Returns the result of the operation.

Return type WriteMultipleResult

Raises

• IllegalArgumentException – raises the exception if request is not an instance of
WriteMultipleRequest.

• RowSizeLimitException – raises the exception if data size in an operation exceeds
the limit.

• BatchOperationNumberLimitException – raises the exception if the number of
operations exceeds this limit.

58 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

• NoSQLException – raises the exception if the operation cannot be performed for any
other reason.

NoSQLHandleConfig

class borneo.NoSQLHandleConfig(endpoint=None, provider=None)
Bases: object

An instance of this class is required by NoSQLHandle.

NoSQLHandleConfig groups parameters used to configure a NoSQLHandle. It also provides a way to default
common parameters for use by NoSQLHandle methods. When creating a NoSQLHandle, the NoSQLHan-
dleConfig instance is copied so modification operations on the instance have no effect on existing handles which
are immutable. NoSQLHandle state with default values can be overridden in individual operations.

The service endpoint is used to connect to the Oracle NoSQL Database Cloud Service or, if on-premise, the
Oracle NoSQL Database proxy server. It should be a string or a Region.

If a string is provided to endpoint argument, there is flexibility in how endpoints are specified. A fully specified
endpoint is of the format:

• http[s]://host:port

It also accepts portions of a fully specified endpoint, including a region id (see Region) string if using the
Cloud service. A valid endpoint is one of these:

• region id string (cloud service only)

• a string with the syntax [http[s]://]host[:port]

For example, these are valid endpoint arguments:

• us-ashburn-1 (equivalent to using Region Regions.US_ASHBURN_1 as the endpoint argument)

• nosql.us-ashburn-1.oci.oraclecloud.com (equivalent to using Region Regions.US_ASHBURN_1 as the
endpoint argument)

• https://nosql.us-ashburn-1.oci.oraclecloud.com:443

• localhost:8080 - used for connecting to a Cloud Simulator instance running locally on port 8080

• https://machine-hosting-proxy:443

When using the endpoint (vs region id) syntax, if the port is omitted, the endpoint uses 8080 if protocol is http,
and 443 in all other cases. If the protocol is omitted, the endpoint uses https if the port is 443, and http in all
other cases.

When using the Oracle NoSQL Database Cloud Service, it is recommended that a Region object is provided
rather than a Region’s id string.

If a Region object is provided to endpoint argument, See Regions for information on available regions. For
example:

• Regions.US_ASHBURN_1

For cloud service, one or both of endpoint and provider must be set. For other scenarios, endpoint is required
while provider is optional.

Parameters

• endpoint (str or Region) – identifies a server, region id or Region for use by the
NoSQLHandle.

4.1. borneo Package 59

https://nosql.us-ashburn-1.oci.oraclecloud.com:443
https://machine-hosting-proxy:443

NoSQL Database Python SDK Documentation

• provider (AuthorizationProvider) – AuthorizationProvider to use for
the handle.

Raises IllegalArgumentException – raises the exception if the endpoint is None or mal-
formed.

Methods Summary

clone() All the configurations will be copied.
configure_default_retry_handler(num_retries,
. . .)

Sets the RetryHandler using a default retry han-
dler configured with the specified number of retries
and a static delay.

get_authorization_provider() Returns the AuthorizationProvider config-
ured for the handle, or None.

get_consistency() Returns the configured default Consistency ,
None if it has not been configured.

get_default_compartment() Cloud service only.
get_default_consistency() Returns the default consistency value that will be

used by the system.
get_default_table_request_timeout() Returns the default value for a table request timeout.
get_default_timeout() Returns the default value for request timeout in mil-

liseconds.
get_logger() Returns the logger, or None if not configured by user.
get_max_content_length() Returns the maximum size, in bytes, of a request op-

eration payload.
get_pool_connections() Returns the number of connection pools to cache.
get_pool_maxsize() Returns the maximum number of individual connec-

tions to use to connect to the service.
get_region() Cloud service only.
get_retry_handler() Returns the RetryHandler configured for the

handle, or None if None is set.
get_service_url() Returns the url to use for the NoSQLHandle con-

nection.
get_ssl_ca_certs() Returns the SSL CA certificates.
get_ssl_cipher_suites() Returns the SSL cipher suites to enable.
get_ssl_protocol() Returns the SSL protocols to enable.
get_table_request_timeout() Returns the configured table request timeout value,

in milliseconds.
get_timeout() Returns the configured request timeout value, in mil-

liseconds, 0 if it has not been set.
set_authorization_provider(provider) Sets the AuthorizationProvider to use for

the handle.
set_consistency(consistency) Sets the default request Consistency .
set_default_compartment(compartment) Cloud service only.
set_default_rate_limiting_percentage(percent)Cloud service only.
set_logger(logger) Sets the logger used for the driver.
set_max_content_length(max_content_length) Sets the maximum size in bytes of request payloads.
set_pool_connections(pool_connections) Sets the number of connection pools to cache.
set_pool_maxsize(pool_maxsize) Sets the maximum number of individual connections

to use to connect to to the service.
set_rate_limiting_enabled(enable) Cloud service only.

Continued on next page

60 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 19 – continued from previous page
set_retry_handler(retry_handler) Sets the RetryHandler to use for the handle.
set_ssl_ca_certs(ssl_ca_certs) On-premise only.
set_ssl_cipher_suites(ssl_ciphers) Set SSL cipher suites to enable.
set_ssl_protocol(ssl_protocol) Set SSL protocol to enable.
set_table_request_timeout(table_request_timeout)Sets the default table request timeout.
set_timeout(timeout) Sets the default request timeout in milliseconds, the

default timeout is 5 seconds.

Methods Documentation

clone()
All the configurations will be copied.

Returns the copy of the instance.

Return type NoSQLHandleConfig

configure_default_retry_handler(num_retries, delay_s)
Sets the RetryHandler using a default retry handler configured with the specified number of retries
and a static delay. A delay of 0 means “use the default delay algorithm” which is an incremental backoff
algorithm. A non-zero delay will work but is not recommended for production systems as it is not flexible.

The default retry handler will not retry exceptions of type OperationThrottlingException. The
reason is that these operations are long-running, and while technically they can be retried, an immediate
retry is unlikely to succeed because of the low rates allowed for these operations.

Parameters

• num_retries (int) – the number of retries to perform automatically. This parameter
may be 0 for no retries.

• delay_s (int) – the delay, in seconds. Pass 0 to use the default delay algorithm.

Returns self.

Raises IllegalArgumentException – raises the exception if num_retries or delay_s is a
negative number.

get_authorization_provider()
Returns the AuthorizationProvider configured for the handle, or None.

Returns the AuthorizationProvider.

Return type AuthorizationProvider

get_consistency()
Returns the configured default Consistency , None if it has not been configured.

Returns the consistency, or None if it has not been configured.

Return type Consistency

get_default_compartment()
Cloud service only.

Returns the default compartment to use for requests or None if not set. The value may be a compartment
name or id, as set by set_default_compartment().

Returns the compartment, or None.

Return type str or None

4.1. borneo Package 61

NoSQL Database Python SDK Documentation

get_default_consistency()
Returns the default consistency value that will be used by the system. If consistency has been set using
set_consistency(), that will be returned. If not a default value of Consistency.EVENTUAL is
returned.

Returns the default consistency.

Return type Consistency

get_default_table_request_timeout()
Returns the default value for a table request timeout. If there is no configured timeout or it is configured
as 0, a “default” default value of 10000 milliseconds is used.

Returns the default timeout, in milliseconds.

Return type int

get_default_timeout()
Returns the default value for request timeout in milliseconds. If there is no configured timeout or it is
configured as 0, a “default” value of 5000 milliseconds is used.

Returns the default timeout, in milliseconds.

Return type int

get_logger()
Returns the logger, or None if not configured by user.

Returns the logger.

Return type Logger

get_max_content_length()
Returns the maximum size, in bytes, of a request operation payload. On-premise only. This value is
ignored for cloud operations.

Returns the size.

Return type int

get_pool_connections()
Returns the number of connection pools to cache.

Returns the number of connection pools.

Return type int

get_pool_maxsize()
Returns the maximum number of individual connections to use to connect to the service. Each re-
quest/response pair uses a connection. The pool exists to allow concurrent requests and will bound the
number of concurrent requests. Additional requests will wait for a connection to become available.

Returns the pool size.

Return type int

get_region()
Cloud service only.

Returns the region will be accessed by the NoSQLHandle.

Returns the region.

Return type Region

62 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

get_retry_handler()
Returns the RetryHandler configured for the handle, or None if None is set.

Returns the handler.

Return type RetryHandler

get_service_url()
Returns the url to use for the NoSQLHandle connection.

Returns the url.

Return type ParseResult

get_ssl_ca_certs()
Returns the SSL CA certificates.

Returns ssl ca certificates.

Return type str

get_ssl_cipher_suites()
Returns the SSL cipher suites to enable.

Returns ssl ciphers in a string in the OpenSSL cipher list format.

Return type str

get_ssl_protocol()
Returns the SSL protocols to enable.

Returns ssl protocols.

Return type int

get_table_request_timeout()
Returns the configured table request timeout value, in milliseconds. The table request timeout default can
be specified independently to allow it to be larger than a typical data request. If it is not specified the
default table request timeout of 10000 is used.

Returns the timeout, in milliseconds, or 0 if it has not been set.

Return type int

get_timeout()
Returns the configured request timeout value, in milliseconds, 0 if it has not been set.

Returns the timeout, in milliseconds, or 0 if it has not been set.

Return type int

set_authorization_provider(provider)
Sets the AuthorizationProvider to use for the handle. The provider must be safely usable by
multiple threads.

Parameters provider (AuthorizationProvider) – the AuthorizationProvider.

Returns self.

Raises IllegalArgumentException – raises the exception if provider is not an instance
of AuthorizationProvider.

set_consistency(consistency)
Sets the default request Consistency . If not set in this object or by a specific request, the default
consistency used is Consistency.EVENTUAL.

Parameters consistency (Consistency) – the consistency.

4.1. borneo Package 63

NoSQL Database Python SDK Documentation

Returns self.

Raises IllegalArgumentException – raises the exception if consistency is not Consis-
tency.ABSOLUTE or Consistency.EVENTUAL.

set_default_compartment(compartment)
Cloud service only.

Sets the default compartment to use for requests sent using the handle. Setting the default is optional and
if set it is overridden by any compartment specified in a request or table name. If no compartment is set
for a request, either using this default or by specification in a request, the behavior varies with how the
application is authenticated:

• If authenticated with a user identity the default is the root compartment of the tenancy

• If authenticated as an instance principal (see borneo.iam.SignatureProvider.
create_with_instance_principal()) the compartment id (OCID) must be specified by
either using this method or in each Request object. If not an exception is thrown.

Parameters compartment (str) – may be either the name of a compartment or the id (OCID)
of a compartment.

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a string.

set_default_rate_limiting_percentage(percent)
Cloud service only.

Sets a default percentage of table limits to use. This may be useful for cases where a client
should only use a portion of full table limits. This only applies if rate limiting is enabled using
set_rate_limiting_enabled().

The default for this value is 100.0 (full table limits).

Parameters percent (int or float or Decimal) – the percentage of table limits to
use. This value must be positive.

Returns self.

Raises IllegalArgumentException – raises the exception if percent is not a positive
digital number.

set_logger(logger)
Sets the logger used for the driver.

Parameters logger (Logger) – the logger or None, None means disable logging.

Returns self.

Raises IllegalArgumentException – raises the exception if logger is not an instance of
Logger.

set_max_content_length(max_content_length)
Sets the maximum size in bytes of request payloads. On-premise only. This setting is ignored for cloud
operations. If not set, or set to zero, the default value of 32MB is used.

Parameters max_content_length (int) – the maximum bytes allowed in requests. Pass
zero to use the default.

Returns self.

Raises IllegalArgumentException – raises the exception if max_content_length is a
negative number.

64 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

set_pool_connections(pool_connections)
Sets the number of connection pools to cache.

Parameters pool_connections (int) – the number of connection pools.

Returns self.

Raises IllegalArgumentException – raises the exception if pool_connections is not a
positive number.

set_pool_maxsize(pool_maxsize)
Sets the maximum number of individual connections to use to connect to to the service. Each re-
quest/response pair uses a connection. The pool exists to allow concurrent requests and will bound the
number of concurrent requests. Additional requests will wait for a connection to become available.

Parameters pool_maxsize (int) – the pool size.

Returns self.

Raises IllegalArgumentException – raises the exception if pool_maxsize is not a posi-
tive number.

set_rate_limiting_enabled(enable)
Cloud service only.

Enables internal rate limiting.

Parameters enable (bool) – If True, enable internal rate limiting, otherwise disable internal
rate limiting.

Returns self.

Raises IllegalArgumentException – raises the exception if enable is not a boolean.

set_retry_handler(retry_handler)
Sets the RetryHandler to use for the handle. If no handler is configured a default is used. The handler
must be safely usable by multiple threads.

Parameters retry_handler (RetryHandler) – the handler.

Returns self.

Raises IllegalArgumentException – raises the exception if retry_handler is not an in-
stance of RetryHandler.

set_ssl_ca_certs(ssl_ca_certs)
On-premise only.

When running against on-premise Oracle NoSQL Database with security enabled, certificates should be
specified using this method. Otherwise environment variable REQUESTS_CA_BUNDLE should be con-
figured. See the installation guide for the configuration of REQUESTS_CA_BUNDLE.

Parameters ssl_ca_certs (str) – ssl ca certificates.

Returns self.

Raises IllegalArgumentException – raises the exception if ssl_ca_certs is not a string.

set_ssl_cipher_suites(ssl_ciphers)
Set SSL cipher suites to enable.

Parameters ssl_ciphers (str) – ssl ciphers in a string in the OpenSSL cipher list format.

Returns self.

Raises IllegalArgumentException – raises the exception if ssl_ciphers is not a string.

4.1. borneo Package 65

https://nosql-python-sdk.readthedocs.io/en/stable/installation.html

NoSQL Database Python SDK Documentation

set_ssl_protocol(ssl_protocol)
Set SSL protocol to enable.

Parameters ssl_protocol (int) – ssl protocol version.

Returns self.

Raises IllegalArgumentException – raises the exception if ssl_protocol is a negative
integer.

set_table_request_timeout(table_request_timeout)
Sets the default table request timeout. The default timeout is 5 seconds. The table request timeout can
be specified independently of that specified by set_request_timeout() because table requests can
take longer and justify longer timeouts. The default timeout is 10 seconds (10000 milliseconds).

Parameters table_request_timeout (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if table_request_timeout is a
negative number.

set_timeout(timeout)
Sets the default request timeout in milliseconds, the default timeout is 5 seconds.

Parameters timeout (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if timeout is a negative num-
ber.

OperationNotSupportedException

exception borneo.OperationNotSupportedException(message)
The operation attempted is not supported. This may be related to on-premise vs cloud service configurations.

OperationResult

class borneo.OperationResult
Bases: borneo.operations.WriteResult

A single Result associated with the execution of an individual operation in a NoSQLHandle.
write_multiple() request. A list of OperationResult is contained in WriteMultipleResult and
obtained using WriteMultipleResult.get_results().

Methods Summary

get_existing_modification_time() Returns the existing row modification time if avail-
able.

get_existing_value() Returns the previous row value associated with the
key if available.

get_existing_version() Returns the existing row version associated with the
key if available.

get_generated_value() Returns the value generated if the operation created
a new value.

Continued on next page

66 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 20 – continued from previous page
get_success() Returns the flag indicates whether the operation suc-

ceeded.
get_version() Returns the version of the new row for put operation,

or None if put operations did not succeed or the op-
eration is delete operation.

Methods Documentation

get_existing_modification_time()
Returns the existing row modification time if available.

Returns the modification time in milliseconds since January 1, 1970

Return type int

Versionadded 5.3.0

get_existing_value()
Returns the previous row value associated with the key if available.

Returns the previous row value

Return type dict

get_existing_version()
Returns the existing row version associated with the key if available.

Returns the existing row version

Return type Version

get_generated_value()
Returns the value generated if the operation created a new value. This can happen if the table contains
an identity column or string column declared as a generated UUID. If the table has no such columns this
value is None. If a value was generated for the operation, it is non-None.

This value is only valid for a put operation on a table with an identity column or string as uuid column.

Returns the generated value.

get_success()
Returns the flag indicates whether the operation succeeded. A put or delete operation may be unsuccessful
if the condition is not matched.

Returns True if the operation succeeded.

Return type bool

get_version()
Returns the version of the new row for put operation, or None if put operations did not succeed or the
operation is delete operation.

Returns the version.

Return type Version

OperationThrottlingException

exception borneo.OperationThrottlingException(message)
Cloud service only.

4.1. borneo Package 67

NoSQL Database Python SDK Documentation

An exception that is thrown when a non-data operation is throttled. This can happen if an application attempts
too many control operations such as table creation, deletion, or similar methods. Such operations do not use
throughput or capacity provisioned for a given table but they consume system resources and their use is limited.

Operations resulting in this exception can be retried but it is recommended that callers use a relatively large
delay before retrying in order to minimize the chance that a retry will also be throttled.

PreparedStatement

class borneo.PreparedStatement(sql_text, query_plan, query_schema, topology_info,
proxy_statement, driver_plan, num_iterators, num_registers,
external_vars, namespace, table_name, operation)

Bases: object

A class encapsulating a prepared query statement. It includes state that can be sent to a server and executed
without re-parsing the query. It includes bind variables which may be set for each successive use of the query.
The prepared query itself is read-only but this object contains a dictionary of bind variables and is not thread-safe
if variables are used.

PreparedStatement instances are returned inside PrepareResult objects returned by NoSQLHandle.
prepare()

A single instance of PreparedStatement is thread-safe if bind variables are not used. If bind variables are to
be used and the statement shared among threads additional instances of PreparedStatement can be constructed
using copy_statement().

Methods Summary

clear_variables() Clears all bind variables from the statement.
copy_statement() Returns a new instance that shares this object’s pre-

pared query, which is immutable, but does not share
its variables.

get_query_plan() Returns a string representation of the query
execution plan, if it was requested in the
PrepareRequest; None otherwise.

get_sql_text() Returns the SQL text of this PreparedStatement.
get_variables() Returns the dictionary of variables to use for a pre-

pared query with variables.
set_variable(variable, value) Binds an external variable to a given value.

Methods Documentation

clear_variables()
Clears all bind variables from the statement.

copy_statement()
Returns a new instance that shares this object’s prepared query, which is immutable, but does not share its
variables.

Returns a new PreparedStatement using this instance’s prepared query. Bind variables are unini-
tialized.

Return type PreparedStatement

get_query_plan()

68 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns a string representation of the query execution plan, if it was requested in the PrepareRequest;
None otherwise.

Returns the string representation of the query execution plan.

Return type bool

get_sql_text()
Returns the SQL text of this PreparedStatement.

Returns the SQL text of this PreparedStatement.

Return type str

get_variables()
Returns the dictionary of variables to use for a prepared query with variables.

Returns the dictionary.

Return type dict

set_variable(variable, value)
Binds an external variable to a given value. The variable is identified by its name or its position within
the query string. The variable that appears first in the query text has position 1, the variable that appears
second has position 2 and so on.

Parameters

• variable (str or int) – the name or the position of the variable.

• value (a value matching the type of the field) – the value.

Returns self.

Raises IllegalArgumentException – raises the exception if variable is not a string or
positive integer.

PrepareRequest

class borneo.PrepareRequest
Bases: borneo.operations.Request

A request that encapsulates a query prepare call. Query preparation allows queries to be compiled (prepared)
and reused, saving time and resources. Use of prepared queries vs direct execution of query strings is highly
recommended.

Prepared queries are implemented as PreparedStatement which supports bind variables in queries which
can be used to more easily reuse a query by parameterization.

The statement is required parameter.

Methods Summary

get_compartment() Cloud service only.
get_query_plan() Returns whether a JSON representation of the

query execution plan should be included in the
PreparedStatement.

get_statement() Returns the query statement.
Continued on next page

4.1. borneo Package 69

NoSQL Database Python SDK Documentation

Table 22 – continued from previous page
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_compartment(compartment) Cloud service only.
set_get_query_plan(get_query_plan) Sets whether a JSON representation of the

query execution plan should be included in the
PreparedStatement.

set_statement(statement) Sets the query statement.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_query_plan()
Returns whether a JSON representation of the query execution plan should be included in the
PreparedStatement.

Returns whether the the query execution plan should be included in the
PreparedStatement.

Return type bool

get_statement()
Returns the query statement.

Returns the statement, or None if it has not been set.

Return type str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the value.

Return type int

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

70 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

set_get_query_plan(get_query_plan)
Sets whether a JSON representation of the query execution plan should be included in the
PreparedStatement.

Parameters get_query_plan (bool) – True if a the query execution plan should be in-
cluded in the PreparedStatement. False otherwise.

Returns self.

Raises IllegalArgumentException – raises the exception if get_query_plan is not a
boolean.

set_statement(statement)
Sets the query statement.

Parameters statement (str) – the query statement.

Returns self.

Raises IllegalArgumentException – raises the exception if statement is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

PrepareResult

class borneo.PrepareResult
Bases: borneo.operations.Result

The result of a prepare operation. The returned PreparedStatement can be re-used for query execution
using QueryRequest.set_prepared_statement()

Methods Summary

get_prepared_statement() Returns the value of the prepared statement.
get_read_kb() Returns the read throughput consumed by this oper-

ation, in KBytes.
get_read_units() Returns the read throughput consumed by this oper-

ation, in read units.
get_write_kb() Returns the write throughput consumed by this oper-

ation, in KBytes.
get_write_units() Returns the write throughput consumed by this oper-

ation, in write units.

Methods Documentation

get_prepared_statement()
Returns the value of the prepared statement.

Returns the value of the prepared statement.

4.1. borneo Package 71

NoSQL Database Python SDK Documentation

Return type PreparedStatement

get_read_kb()
Returns the read throughput consumed by this operation, in KBytes. This is the actual amount of data read
by the operation. The number of read units consumed is returned by get_read_units() which may
be a larger number if the operation used Consistency.ABSOLUTE.

Returns the read KBytes consumed.

Return type int

get_read_units()
Returns the read throughput consumed by this operation, in read units. This number may be larger than
that returned by get_read_kb() if the operation used Consistency.ABSOLUTE.

Returns the read units consumed.

Return type int

get_write_kb()
Returns the write throughput consumed by this operation, in KBytes.

Returns the write KBytes consumed.

Return type int

get_write_units()
Returns the write throughput consumed by this operation, in write units.

Returns the write units consumed.

Return type int

PutOption

class borneo.PutOption
Bases: object

Set the put option for put requests.

Attributes Summary

IF_ABSENT Set PutOption.IF_ABSENT to perform put if absent
operation.

IF_PRESENT Set PutOption.IF_PRESENT to perform put if
present operation.

IF_VERSION Set PutOption.IF_VERSION to perform put if ver-
sion operation.

Attributes Documentation

IF_ABSENT = 0
Set PutOption.IF_ABSENT to perform put if absent operation.

IF_PRESENT = 1
Set PutOption.IF_PRESENT to perform put if present operation.

IF_VERSION = 2
Set PutOption.IF_VERSION to perform put if version operation.

72 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

PutRequest

class borneo.PutRequest
Bases: borneo.operations.WriteRequest

Represents the input to a NoSQLHandle.put() operation.

This request can be used to perform unconditional and conditional puts:

Overwrite any existing row. This is the default.

Succeed only if the row does not exist. Use PutOption.IF_ABSENT for this case.

Succeed only if the row exists. Use PutOption.IF_PRESENT for this case.

Succeed only if the row exists and its Version matches a specific Version. Use PutOp-
tion.IF_VERSION for this case and set_match_version() to specify the version to match.

Information about the existing row can be returned on failure of a put operation using PutOption.IF_VERSION
or PutOption.IF_ABSENT by using set_return_row(). Requesting this information incurs additional cost
and may affect operation latency.

On a successful operation the Version returned by PutResult.get_version() is non-none. Additional
information, such as previous row information, may be available in PutResult.

The table name and value are required parameters.

Methods Summary

get_compartment() Cloud service only.
get_durability() On-premise only.
get_exact_match() Returns whether the value must be an exact match to

the table schema or not.
get_identity_cache_size() Gets the number of generated identity values that are

requested from the server during a put if set in this
request.

get_match_version() Returns the Version used for a match on a condi-
tional put.

get_option() Returns the option specified for the put.
get_return_row() Returns whether information about the exist row

should be returned on failure because of a version
mismatch or failure of an “if absent” operation.

get_table_name() Returns the table name to use for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
get_ttl() Returns the TimeToLive value, if set.
get_update_ttl() Returns True if the operation should update the ttl.
get_use_table_default_ttl() Returns whether or not to update the row’s time to

live (TTL) based on a table default value if the row
exists.

get_value() Returns the value of the row to be used.
set_compartment(compartment) Cloud service only.
set_durability(durability) On-premise only.
set_exact_match(exact_match) If True the value must be an exact match for the table

schema or the operation will fail.
Continued on next page

4.1. borneo Package 73

NoSQL Database Python SDK Documentation

Table 25 – continued from previous page
set_identity_cache_size(identity_cache_size)Sets the number of generated identity values that are

requested from the server during a put.
set_match_version(version) Sets the Version to use for a conditional put oper-

ation.
set_option(option) Sets the option for the put.
set_return_row(return_row) Sets whether information about the exist row should

be returned on failure because of a version mismatch
or failure of an “if absent” operation.

set_table_name(table_name) Sets the table name to use for the operation.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.
set_ttl(ttl) Sets the TimeToLive value, causing the time to

live on the row to be set to the specified value on
put.

set_use_table_default_ttl(update_ttl) If value is True, and there is an existing row, causes
the operation to update the time to live (TTL) value
of the row based on the Table’s default TTL if set.

set_value(value) Sets the value to use for the put operation.
set_value_from_json(json_value) Sets the value to use for the put operation based on a

JSON string.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_durability()
On-premise only. Gets the durability to use for the operation or None if not set :returns: the Durability
:versionadded: 5.3.0

get_match_version()
Returns the Version used for a match on a conditional put.

Returns the Version or None if not set.

Return type Version

get_option()
Returns the option specified for the put.

Returns the option specified.

Return type PutOption

get_return_row()
Returns whether information about the exist row should be returned on failure because of a version mis-
match or failure of an “if absent” operation. If no option is set via set_option() or the option is
PutOption.IF_PRESENT the value of this parameter is ignored and there will not be any return informa-
tion.

Returns True if information should be returned.

Return type bool

74 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

get_table_name()
Returns the table name to use for the operation.

Returns the table name, or None if not set.

Returns str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

get_ttl()
Returns the TimeToLive value, if set.

Returns the TimeToLive if set, None otherwise.

Return type TimeToLive

get_update_ttl()
Returns True if the operation should update the ttl.

Returns True if the operation should update the ttl.

Return type bool

get_use_table_default_ttl()
Returns whether or not to update the row’s time to live (TTL) based on a table default value if the row
exists. By default updates of existing rows do not affect that row’s TTL.

Returns whether or not to update the row’s TTL based on a table default value if the row exists.

Return type bool

get_value()
Returns the value of the row to be used.

Returns the value, or None if not set.

Return type dict

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_durability(durability)
On-premise only. Sets the durability to use for the operation.

4.1. borneo Package 75

NoSQL Database Python SDK Documentation

Parameters durability (Durability) – the Durability to use

Returns self.

Raises IllegalArgumentException – raises the exception if Durability is not valid

Versionadded 5.3.0

set_match_version(version)
Sets the Version to use for a conditional put operation. The Version is usually obtained from
GetResult.get_version() or other method that returns a Version. When set, the put operation
will succeed only if the row exists and its Version matches the one specified. This condition exists to
allow an application to ensure that it is updating a row in an atomic read-modify-write cycle. Using this
mechanism incurs additional cost.

Parameters version (Version) – the Version to match.

Returns self.

Raises IllegalArgumentException – raises the exception if version is not an instance of
Version.

set_option(option)
Sets the option for the put.

Parameters option (PutOption) – the option to set.

Returns self.

set_return_row(return_row)
Sets whether information about the exist row should be returned on failure because of a version mismatch
or failure of an “if absent” operation.

Parameters return_row (bool) – set to True if information should be returned.

Returns self.

Raises IllegalArgumentException – raises the exception if return_row is not True or
False.

set_table_name(table_name)
Sets the table name to use for the operation.

Parameters table_name (str) – the table name.

Returns self.

Raises IllegalArgumentException – raises the exception if table_name is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

set_ttl(ttl)
Sets the TimeToLive value, causing the time to live on the row to be set to the specified value on put.
This value overrides any default time to live setting on the table.

Parameters ttl (TimeToLive) – the time to live.

76 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns self.

Raises IllegalArgumentException – raises the exception if ttl is not an instance of
TimeToLive.

set_use_table_default_ttl(update_ttl)
If value is True, and there is an existing row, causes the operation to update the time to live (TTL) value of
the row based on the Table’s default TTL if set. If the table has no default TTL this state has no effect. By
default updating an existing row has no effect on its TTL.

Parameters update_ttl (bool) – True or False.

Returns self.

Raises IllegalArgumentException – raises the exception if update_ttl is not True or
False.

set_value(value)
Sets the value to use for the put operation. This is a required parameter and must be set using this method
or set_value_from_json()

Parameters value (dict) – the row value.

Returns self.

Raises IllegalArgumentException – raises the exception if value is not a dictionary.

set_value_from_json(json_value)
Sets the value to use for the put operation based on a JSON string. The string is parsed for valid-
ity and stored internally as a dict. This is a required parameter and must be set using this method or
set_value()

Parameters json_value (str) – the row value as a JSON string.

Returns self.

Raises IllegalArgumentException – raises the exception if json_value is not a string.

PutResult

class borneo.PutResult
Bases: borneo.operations.WriteResult

Represents the result of a NoSQLHandle.put() operation.

On a successful operation the value returned by get_version() is non-none. On failure that value is
None. Information about the existing row on failure may be available using get_existing_value() and
get_existing_version(), depending on the use of PutRequest.set_return_row() and whether
the put had an option set using PutRequest.set_option().

Methods Summary

get_existing_modification_time() Returns the existing row modification time if avail-
able.

get_existing_value() Returns the existing row value if available.
get_existing_version() Returns the existing row Version if available.
get_generated_value() Returns the value generated if the operation created

a new value.
Continued on next page

4.1. borneo Package 77

NoSQL Database Python SDK Documentation

Table 26 – continued from previous page
get_read_kb() Returns the read throughput consumed by this oper-

ation, in KBytes.
get_read_units() Returns the read throughput consumed by this oper-

ation, in read units.
get_version() Returns the Version of the new row if the opera-

tion was successful.
get_write_kb() Returns the write throughput consumed by this oper-

ation, in KBytes.
get_write_units() Returns the write throughput consumed by this oper-

ation, in write units.

Methods Documentation

get_existing_modification_time()
Returns the existing row modification time if available. It will be available if the conditional put
operation failed and the request specified that return information be returned using PutRequest.
set_return_row(). A value of -1 indicates this feature is not available at the connected server.

Returns the modification time in milliseconds since January 1, 1970

Return type int

Versionadded 5.3.0

get_existing_value()
Returns the existing row value if available. This value will only be available if the conditional put
operation failed and the request specified that return information be returned using PutRequest.
set_return_row().

Returns the value.

Return type dict

get_existing_version()
Returns the existing row Version if available. This value will only be available if the conditional
put operation failed and the request specified that return information be returned using PutRequest.
set_return_row().

Returns the Version.

Return type Version

get_generated_value()
Returns the value generated if the operation created a new value. This can happen if the table contains
an identity column or string column declared as a generated UUID. If the table has no such columns this
value is None. If a value was generated for the operation, it is non-None.

Returns the generated value.

get_read_kb()
Returns the read throughput consumed by this operation, in KBytes. This is the actual amount of data read
by the operation. The number of read units consumed is returned by get_read_units() which may
be a larger number because this was an update operation.

Returns the read KBytes consumed.

Return type int

78 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

get_read_units()
Returns the read throughput consumed by this operation, in read units. This number may be larger than
that returned by get_read_kb() because it was an update operation.

Returns the read units consumed.

Return type int

get_version()
Returns the Version of the new row if the operation was successful. If the operation failed None is
returned.

Returns the Version on success, None on failure.

Return type Version

get_write_kb()
Returns the write throughput consumed by this operation, in KBytes.

Returns the write KBytes consumed.

Return type int

get_write_units()
Returns the write throughput consumed by this operation, in write units.

Returns the write units consumed.

Return type int

QueryRequest

class borneo.QueryRequest
Bases: borneo.operations.Request

A request that represents a query. A query may be specified as either a textual SQL statement (a String) or a
prepared query (an instance of PreparedStatement), which may include bind variables.

For performance reasons prepared queries are preferred for queries that may be reused. This is because prepared
queries bypass query compilation. They also allow for parameterized queries using bind variables.

To compute and retrieve the full result set of a query, the same QueryRequest instance will, in general, have to
be executed multiple times (via NoSQLHandle.query()). Each execution returns a QueryResult, which
contains a subset of the result set. The following code snippet illustrates a typical query execution:

handle = ...
request = QueryRequest().set_statement('SELECT * FROM foo')
while True:

result = handle.query(request)
results = result.get_results()
do something with the results
if request.is_done():

break

Notice that a batch of results returned by a QueryRequest execution may be empty. This is because during
each execution the query is allowed to read or write a maximum number of bytes. If this maximum is reached,
execution stops. This can happen before any result was generated (for example, if none of the rows read satisfied
the query conditions).

If an application wishes to terminate query execution before retrieving all of the query results, it should call
close() in order to release any local resources held by the query. This also allows the application to reuse the
QueryRequest instance to run the same query from the beginning or a different query.

4.1. borneo Package 79

NoSQL Database Python SDK Documentation

QueryRequest instances are not thread-safe. That is, if two or more application threads need to run the same
query concurrently, they must create and use their own QueryRequest instances.

The statement or prepared_statement is required parameter.

Methods Summary

close() Terminates the query execution and releases any
memory consumed by the query at the driver.

get_compartment() Cloud service only.
get_consistency() Returns the consistency set for this request, or None

if not set.
get_limit() Returns the limit on number of items returned by the

operation.
get_math_context() Returns the Context used for Decimal operations.
get_max_memory_consumption() Returns the maximum number of memory bytes that

may be consumed by the statement at the driver for
operations such as duplicate elimination (which may
be required due to the use of an index on a list or
map) and sorting (sorting by distance when a query
contains a geo_near() function).

get_max_read_kb() Returns the limit on the total data read during this
operation, in KB.

get_max_write_kb() Returns the limit on the total data written during this
operation, in KB.

get_prepared_statement() Returns the prepared query statement.
get_statement() Returns the query statement.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
is_done() Returns True if the query execution is finished, i.e.,

there are no more query results to be generated.
set_compartment(compartment) Cloud service only.
set_consistency(consistency) Sets the consistency to use for the operation.
set_limit(limit) Sets the limit on number of items returned by the

operation.
set_math_context(math_context) Sets the Context used for Decimal operations.
set_max_memory_consumption(memory_consumption)Sets the maximum number of memory bytes that

may be consumed by the statement at the driver for
operations such as duplicate elimination (which may
be required due to the use of an index on a list or
map) and sorting.

set_max_read_kb(max_read_kb) Sets the limit on the total data read during this oper-
ation, in KB.

set_max_write_kb(max_write_kb) Sets the limit on the total data written during this op-
eration, in KB.

set_prepared_statement(value) Sets the prepared query statement.
set_statement(statement) Sets the query statement.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

80 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Methods Documentation

close()
Terminates the query execution and releases any memory consumed by the query at the driver. An appli-
cation should use this method if it wishes to terminate query execution before retrieving all of the query
results.

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_consistency()
Returns the consistency set for this request, or None if not set.

Returns the consistency

Return type Consistency

get_limit()
Returns the limit on number of items returned by the operation. If not set by the application this value will
be 0 which means no limit.

Returns the limit, or 0 if not set.

Return type int

get_math_context()
Returns the Context used for Decimal operations.

Returns the Context used for Decimal operations.

Return type Context

get_max_memory_consumption()
Returns the maximum number of memory bytes that may be consumed by the statement at the driver for
operations such as duplicate elimination (which may be required due to the use of an index on a list or
map) and sorting (sorting by distance when a query contains a geo_near() function). Such operations may
consume a lot of memory as they need to cache the full result set at the client memory. The default value
is 100MB.

Returns the maximum number of memory bytes.

Return type long

get_max_read_kb()
Returns the limit on the total data read during this operation, in KB. If not set by the application this value
will be 0 which means no application-defined limit.

Returns the limit, or 0 if not set.

Return type int

get_max_write_kb()
Returns the limit on the total data written during this operation, in KB. If not set by the application this
value will be 0 which means no application-defined limit.

Returns the limit, or 0 if not set.

Return type int

4.1. borneo Package 81

NoSQL Database Python SDK Documentation

get_prepared_statement()
Returns the prepared query statement.

Returns the statement, or None if it has not been set.

Return type PreparedStatement

get_statement()
Returns the query statement.

Returns the statement, or None if it has not been set.

Return type str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

is_done()
Returns True if the query execution is finished, i.e., there are no more query results to be generated.
Otherwise False.

Returns Whether the query execution is finished or not.

Return type bool

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_consistency(consistency)
Sets the consistency to use for the operation.

Parameters consistency (Consistency) – the consistency.

Returns self.

Raises IllegalArgumentException – raises the exception if consistency is not Consis-
tency.ABSOLUTE or Consistency.EVENTUAL.

set_limit(limit)
Sets the limit on number of items returned by the operation. This allows an operation to return less than
the default amount of data.

Parameters limit (int) – the limit in terms of number of items returned.

Returns self.

82 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Raises IllegalArgumentException – raises the exception if the limit is a negative num-
ber.

set_math_context(math_context)
Sets the Context used for Decimal operations.

Parameters math_context (Context) – the Context used for Decimal operations.

Returns self.

Raises IllegalArgumentException – raises the exception if math_context is not an in-
stance of Context.

set_max_memory_consumption(memory_consumption)
Sets the maximum number of memory bytes that may be consumed by the statement at the driver for
operations such as duplicate elimination (which may be required due to the use of an index on a list or
map) and sorting. Such operations may consume a lot of memory as they need to cache the full result set
or a large subset of it at the client memory. The default value is 1GB.

Parameters memory_consumption (long) – the maximum number of memory bytes that
may be consumed by the statement at the driver for blocking operations.

Returns self.

Raises IllegalArgumentException – raises the exception if memory_consumption is a
negative number or 0.

set_max_read_kb(max_read_kb)
Sets the limit on the total data read during this operation, in KB. This value can only reduce the system
defined limit. This limit is independent of read units consumed by the operation.

It is recommended that for tables with relatively low provisioned read throughput that this limit be re-
duced to less than or equal to one half of the provisioned throughput in order to avoid or reduce throttling
exceptions.

Parameters max_read_kb (int) – the limit in terms of number of KB read during this oper-
ation.

Returns self.

Raises IllegalArgumentException – raises the exception if the max_read_kb value is
less than 0.

set_max_write_kb(max_write_kb)
Sets the limit on the total data written during this operation, in KB. This limit is independent of write units
consumed by the operation.

Parameters max_write_kb (int) – the limit in terms of number of KB written during this
operation.

Returns self.

Raises IllegalArgumentException – raises the exception if the max_write_kb value is
less than 0.

set_prepared_statement(value)
Sets the prepared query statement.

Parameters value (PreparedStatement) – the prepared query statement or the result of
a prepare request.

Returns self.

4.1. borneo Package 83

NoSQL Database Python SDK Documentation

Raises IllegalArgumentException – raises the exception if value is not an instance of
PrepareResult or PreparedStatement.

set_statement(statement)
Sets the query statement.

Parameters statement (str) – the query statement.

Returns self.

Raises IllegalArgumentException – raises the exception if statement is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

QueryResult

class borneo.QueryResult(request, computed=True)
Bases: borneo.operations.Result

QueryResult comprises a list of dict instances representing the query results.

The shape of the values is based on the schema implied by the query. For example a query such as “SELECT
* FROM . . . ” that returns an intact row will return values that conform to the schema of the table. Projections
return instances that conform to the schema implied by the statement. UPDATE queries either return values
based on a RETURNING clause or, by default, the number of rows affected by the statement.

A single QueryResult does not imply that all results for the query have been returned. If the value returned by
QueryRequest.is_done() is False there are additional results available. This can happen even if there
are no values in the returned QueryResult. The best way to use QueryRequest and QueryResult is to
perform operations in a loop, for example:

handle = ...
request = QueryRequest().set_statement('SELECT * FROM foo')
while True:

result = handle.query(request)
results = result.get_results()
do something with the results
if request.is_done():

break

Modification queries either return values based on a RETURNING clause or, by default, return the number of
rows affected by the statement in a dictionary. INSERT queries with no RETURNING clause return a dictio-
nary indicating the number of rows inserted, for example {‘NumRowsInserted’: 5}. UPDATE queries with no
RETURNING clause return a dictionary indicating the number of rows updated, for example {‘NumRowsUp-
dated’: 3}. DELETE queries with no RETURNING clause return a dictionary indicating the number of rows
deleted, for example {‘numRowsDeleted’: 2}.

Methods Summary

84 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

get_continuation_key() Returns the continuation key that can be used to ob-
tain more results if non-none.

get_read_kb() Returns the read throughput consumed by this oper-
ation, in KBytes.

get_read_units() Returns the read throughput consumed by this oper-
ation, in read units.

get_results() Returns a list of results for the query.
get_write_kb() Returns the write throughput consumed by this oper-

ation, in KBytes.
get_write_units() Returns the write throughput consumed by this oper-

ation, in write units.

Methods Documentation

get_continuation_key()
Returns the continuation key that can be used to obtain more results if non-none.

Returns the continuation key, or None if there are no further values to return.

Return type bytearray

get_read_kb()
Returns the read throughput consumed by this operation, in KBytes. This is the actual amount of data read
by the operation. The number of read units consumed is returned by get_read_units() which may
be a larger number if the operation used Consistency.ABSOLUTE.

Returns the read KBytes consumed.

Return type int

get_read_units()
Returns the read throughput consumed by this operation, in read units. This number may be larger than
that returned by get_read_kb() if the operation used Consistency.ABSOLUTE.

Returns the read units consumed.

Return type int

get_results()
Returns a list of results for the query. It is possible to have an empty list and a non-none continuation key.

Returns a list of results for the query.

Return type list(dict)

get_write_kb()
Returns the write throughput consumed by this operation, in KBytes.

Returns the write KBytes consumed.

Return type int

get_write_units()
Returns the write throughput consumed by this operation, in write units.

Returns the write units consumed.

Return type int

4.1. borneo Package 85

NoSQL Database Python SDK Documentation

QueryIterableResult

class borneo.QueryIterableResult(request, handle)
Bases: borneo.operations.Result

QueryIterableResult comprises an iterable list of dict instances representing all the query results.

The shape of the values is based on the schema implied by the query. For example a query such as “SELECT
* FROM . . . ” that returns an intact row will return values that conform to the schema of the table. Projections
return instances that conform to the schema implied by the statement. UPDATE queries either return values
based on a RETURNING clause or, by default, the number of rows affected by the statement.

Each iterator from QueryIterableResult will iterate over all results of the query.

handle = ...
request = QueryRequest().set_statement('SELECT * FROM foo')
qiresult = handle.query-iterable(request)
for row in qiresult:

do something with the result row
print(row)

Modification queries either return values based on a RETURNING clause or, by default, return the number of
rows affected by the statement in a dictionary. INSERT queries with no RETURNING clause return a dictio-
nary indicating the number of rows inserted, for example {‘NumRowsInserted’: 5}. UPDATE queries with no
RETURNING clause return a dictionary indicating the number of rows updated, for example {‘NumRowsUp-
dated’: 3}. DELETE queries with no RETURNING clause return a dictionary indicating the number of rows
deleted, for example {‘numRowsDeleted’: 2}.

Versionadded 5.3.6

Methods Summary

get_read_kb() Returns the read throughput consumed by this oper-
ation, in KBytes.

get_read_units() Returns the read throughput consumed by this oper-
ation, in read units.

get_write_kb() Returns the write throughput consumed by this oper-
ation, in KBytes.

Methods Documentation

get_read_kb()
Returns the read throughput consumed by this operation, in KBytes. This is the cumulative actual amount
of data read by the operation since the beginning of the iterable. The number of read units consumed
is returned by get_read_units() which may be a larger number if the operation used Consis-
tency.ABSOLUTE.

Returns the read KBytes consumed.

Return type int

get_read_units()
Returns the read throughput consumed by this operation, in read units. This is the cumulative amount since
the beginning of the iterable. This number may be larger than that returned by get_read_kb() if the
operation used Consistency.ABSOLUTE.

Returns the read units consumed.

86 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Return type int

get_write_kb()
Returns the write throughput consumed by this operation, in KBytes.

Returns the write KBytes consumed.

Return type int

ReadThrottlingException

exception borneo.ReadThrottlingException(message)
Cloud service only.

This exception indicates that the provisioned read throughput has been exceeded.

Operations resulting in this exception can be retried but it is recommended that callers use a delay before retrying
in order to minimize the chance that a retry will also be throttled. Applications should attempt to avoid throttling
exceptions by rate limiting themselves to the degree possible.

Region

class borneo.Region(region_id)
Bases: object

Cloud service only.

The class represents a region of Oracle NoSQL Database Cloud.

Methods Summary

endpoint() Returns the NoSQL Database Cloud Service end-
point string for this region.

Methods Documentation

endpoint()
Returns the NoSQL Database Cloud Service endpoint string for this region.

Returns NoSQL Database Cloud Service endpoint string.

Return type str

Raises IllegalArgumentException – raises the exception if region_id is unknown.

Regions

class borneo.Regions
Bases: object

Cloud service only.

The class contains the regions in the Oracle Cloud Infrastructure at the time of this release. The Oracle NoSQL
Database Cloud Service is not available in all of these regions. For a definitive list of regions in which the Oracle
NoSQL Database Cloud Service is available see Data Regions for Platform and Infrastructure Services.

4.1. borneo Package 87

https://www.oracle.com/cloud/data-regions.html

NoSQL Database Python SDK Documentation

A Region may be provided to NoSQLHandleConfig to configure a handle to communicate in a specific
Region.

The string-based endpoints associated with regions for the Oracle NoSQL Database Cloud Service are of the
format:

https://nosql.{region}.oci.{secondLevelDomain}

Examples of known second level domains include

• oraclecloud.com

• oraclegovcloud.com

• oraclegovcloud.uk

For example, this is a valid endpoint for the Oracle NoSQL Database Cloud Service in the U.S. East region:

https://nosql.us-ashburn-1.oci.oraclecloud.com

If the Oracle NoSQL Database Cloud Service becomes available in a region not listed here it is possible to
connect to that region using the endpoint string rather than a Region.

For more information about Oracle Cloud Infrastructure regions see Regions and Availability Domains.

Attributes Summary

AP_MELBOURNE_1 Region Location: Melbourne, Australia
AP_MUMBAI_1 Region Location: Mumbai, India
AP_OSAKA_1 Region Location: Osaka, Japan
AP_SEOUL_1 Region Location: Seoul, South Korea
AP_SYDNEY_1 Region Location: Sydney, Australia
AP_TOKYO_1 Region Location: Tokyo, Japan
CA_MONTREAL_1 Region Location: Montreal, Canada
CA_TORONTO_1 Region Location: Toronto, Canada
EU_AMSTERDAM_1 Region Location: Amsterdam, Netherlands
EU_FRANKFURT_1 Region Location: Frankfurt, Germany
EU_ZURICH_1 Region Location: Zurich, Switzerland
ME_JEDDAH_1 Region Location: Jeddah, Saudi Arabia
OC1_REGIONS A dict containing the OC1 regions.
OC4_REGIONS A dict containing the OC4 regions.
SA_SAOPAULO_1 Region Location: Sao Paulo, Brazil
UK_GOV_LONDON_1 Region Location: London, United Kingdom
UK_LONDON_1 Region Location: London, United Kingdom
US_ASHBURN_1 Region Location: Ashburn, VA
US_GOV_ASHBURN_1 Region Location: Ashburn, VA
US_GOV_CHICAGO_1 Region Location: Chicago, IL
US_GOV_PHOENIX_1 Region Location: Phoenix, AZ
US_LANGLEY_1 Region Location: Ashburn, VA
US_LUKE_1 Region Location: Phoenix, AZ
US_PHOENIX_1 Region Location: Phoenix, AZ

Methods Summary

88 Chapter 4. API Reference

https://docs.cloud.oracle.com/en-us/iaas/Content/General/Concepts/regions.htm

NoSQL Database Python SDK Documentation

from_region_id(region_id) Returns the Region associated with the string value
supplied, or None if the string does not represent a
known region.

Attributes Documentation

AP_MELBOURNE_1 = <borneo.config.Region object>
Region Location: Melbourne, Australia

AP_MUMBAI_1 = <borneo.config.Region object>
Region Location: Mumbai, India

AP_OSAKA_1 = <borneo.config.Region object>
Region Location: Osaka, Japan

AP_SEOUL_1 = <borneo.config.Region object>
Region Location: Seoul, South Korea

AP_SYDNEY_1 = <borneo.config.Region object>
Region Location: Sydney, Australia

AP_TOKYO_1 = <borneo.config.Region object>
Region Location: Tokyo, Japan

CA_MONTREAL_1 = <borneo.config.Region object>
Region Location: Montreal, Canada

CA_TORONTO_1 = <borneo.config.Region object>
Region Location: Toronto, Canada

EU_AMSTERDAM_1 = <borneo.config.Region object>
Region Location: Amsterdam, Netherlands

EU_FRANKFURT_1 = <borneo.config.Region object>
Region Location: Frankfurt, Germany

EU_ZURICH_1 = <borneo.config.Region object>
Region Location: Zurich, Switzerland

ME_JEDDAH_1 = <borneo.config.Region object>
Region Location: Jeddah, Saudi Arabia

OC1_REGIONS = {'af-johannesburg-1': <borneo.config.Region object>, 'ap-chuncheon-1': <borneo.config.Region object>, 'ap-hyderabad-1': <borneo.config.Region object>, 'ap-melbourne-1': <borneo.config.Region object>, 'ap-mumbai-1': <borneo.config.Region object>, 'ap-osaka-1': <borneo.config.Region object>, 'ap-seoul-1': <borneo.config.Region object>, 'ap-singapore-1': <borneo.config.Region object>, 'ap-sydney-1': <borneo.config.Region object>, 'ap-tokyo-1': <borneo.config.Region object>, 'ca-montreal-1': <borneo.config.Region object>, 'ca-toronto-1': <borneo.config.Region object>, 'eu-amsterdam-1': <borneo.config.Region object>, 'eu-frankfurt-1': <borneo.config.Region object>, 'eu-madrid-1': <borneo.config.Region object>, 'eu-marseille-1': <borneo.config.Region object>, 'eu-milan-1': <borneo.config.Region object>, 'eu-paris-1': <borneo.config.Region object>, 'eu-stockholm-1': <borneo.config.Region object>, 'eu-zurich-1': <borneo.config.Region object>, 'il-jerusalem-1': <borneo.config.Region object>, 'me-abudhabi-1': <borneo.config.Region object>, 'me-dubai-1': <borneo.config.Region object>, 'me-jeddah-1': <borneo.config.Region object>, 'mx-monterrey-1': <borneo.config.Region object>, 'mx-queretaro-1': <borneo.config.Region object>, 'sa-bogota-1': <borneo.config.Region object>, 'sa-santiago-1': <borneo.config.Region object>, 'sa-saopaulo-1': <borneo.config.Region object>, 'sa-valparaiso-1': <borneo.config.Region object>, 'sa-vinhedo-1': <borneo.config.Region object>, 'uk-cardiff-1': <borneo.config.Region object>, 'uk-london-1': <borneo.config.Region object>, 'us-ashburn-1': <borneo.config.Region object>, 'us-chicago-1': <borneo.config.Region object>, 'us-phoenix-1': <borneo.config.Region object>, 'us-saltlake-2': <borneo.config.Region object>, 'us-sanjose-1': <borneo.config.Region object>}
A dict containing the OC1 regions.

OC4_REGIONS = {'uk-gov-cardiff-1': <borneo.config.Region object>, 'uk-gov-london-1': <borneo.config.Region object>}
A dict containing the OC4 regions.

SA_SAOPAULO_1 = <borneo.config.Region object>
Region Location: Sao Paulo, Brazil

UK_GOV_LONDON_1 = <borneo.config.Region object>
Region Location: London, United Kingdom

UK_LONDON_1 = <borneo.config.Region object>
Region Location: London, United Kingdom

US_ASHBURN_1 = <borneo.config.Region object>
Region Location: Ashburn, VA

US_GOV_ASHBURN_1 = <borneo.config.Region object>
Region Location: Ashburn, VA

4.1. borneo Package 89

NoSQL Database Python SDK Documentation

US_GOV_CHICAGO_1 = <borneo.config.Region object>
Region Location: Chicago, IL

US_GOV_PHOENIX_1 = <borneo.config.Region object>
Region Location: Phoenix, AZ

US_LANGLEY_1 = <borneo.config.Region object>
Region Location: Ashburn, VA

US_LUKE_1 = <borneo.config.Region object>
Region Location: Phoenix, AZ

US_PHOENIX_1 = <borneo.config.Region object>
Region Location: Phoenix, AZ

Methods Documentation

static from_region_id(region_id)
Returns the Region associated with the string value supplied, or None if the string does not represent a
known region.

Parameters region_id (str) – the string value of the region.

Returns the Region or None if the string does not represent a Region.

Return type Region

Request

class borneo.Request
Bases: object

A request is a class used as a base for all requests types. Public state and methods are implemented by extending
classes. This pattern is used so that fluent construction works properly for the extending classes

Methods Summary

Methods Documentation

RequestSizeLimitException

exception borneo.RequestSizeLimitException(message)
Cloud service only.

Thrown to indicate that the size of a Request exceeds the system defined limit.

RequestTimeoutException

exception borneo.RequestTimeoutException(message, timeout_ms=0, cause=None)
Thrown when a request cannot be processed because the configured timeout interval is exceeded. If a retry
handler is configured it is possible that the request has been retried a number of times before the timeout occurs.

90 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

ResourceExistsException

exception borneo.ResourceExistsException(message)
The operation attempted to create a resource but it already exists.

ResourcePrincipalClaimKeys

class borneo.ResourcePrincipalClaimKeys
Bases: object

Claim keys in the resource principal session token(RPST).

They can be used to retrieve resource principal metadata such as its compartment and tenancy OCID.

Attributes Summary

COMPARTMENT_ID_CLAIM_KEY The claim name that the RPST holds for the resource
compartment.

TENANT_ID_CLAIM_KEY The claim name that the RPST holds for the resource
tenancy.

Attributes Documentation

COMPARTMENT_ID_CLAIM_KEY = 'res_compartment'
The claim name that the RPST holds for the resource compartment. This can be passed to borneo.iam.
SignatureProvider.get_resource_principal_claim() to retrieve the resource’s com-
partment OCID.

TENANT_ID_CLAIM_KEY = 'res_tenant'
The claim name that the RPST holds for the resource tenancy. This can be passed to borneo.iam.
SignatureProvider.get_resource_principal_claim() to retrieve the resource’s tenancy
OCID.

ResourceNotFoundException

exception borneo.ResourceNotFoundException(message)
The operation attempted to access a resource that does not exist or is not in a visible state.

Result

class borneo.Result
Bases: object

Result is a base class for result classes for all supported operations. All state and methods are maintained by
extending classes.

Methods Summary

4.1. borneo Package 91

NoSQL Database Python SDK Documentation

Methods Documentation

RetryHandler

class borneo.RetryHandler
Bases: object

RetryHandler is called by the request handling system when a RetryableException is thrown. It controls
the number of retries as well as frequency of retries using a delaying algorithm. A default RetryHandler is always
configured on a NoSQLHandle instance and can be controlled or overridden using NoSQLHandleConfig.
set_retry_handler() and NoSQLHandleConfig.configure_default_retry_handler().

It is not recommended that applications rely on a RetryHandler for regulating provisioned throughput. It is
best to add rate limiting to the application based on a table’s capacity and access patterns to avoid throttling
exceptions: see NoSQLHandleConfig.set_rate_limiting_enabled().

Instances of this class must be immutable so they can be shared among threads.

Methods Summary

delay(request, num_retried, re) This method is called when a
RetryableException is thrown and it is
determined that the request will be retried based on
the return value of do_retry().

do_retry(request, num_retried, re) This method is called when a
RetryableException is thrown and deter-
mines whether to perform a retry or not based on the
parameters.

get_num_retries() Returns the number of retries that this handler in-
stance will allow before the exception is thrown to
the application.

Methods Documentation

delay(request, num_retried, re)
This method is called when a RetryableException is thrown and it is determined that the request
will be retried based on the return value of do_retry(). It provides a delay between retries. Most
implementations will sleep for some period of time. The method should not return until the desired delay
period has passed. Implementations should not busy-wait in a tight loop.

If delayMS is non-zero, use it. Otherwise, use a exponential backoff algorithm to compute the time of
delay.

If retry-able exception is SecurityInfoNotReadyException, delay for SEC_RETRY_DELAY_MS when
number of retries is smaller than 10. Otherwise, use the exponential backoff algorithm to compute the time
of delay.

Parameters

• request (Request) – request to execute.

• num_retried (int) – the number of retries that have occurred for the operation.

• re (RetryableException) – the exception that was thrown.

Raises IllegalArgumentException – raises the exception if num_retried is not a positive
number.

92 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

do_retry(request, num_retried, re)
This method is called when a RetryableException is thrown and determines whether to perform a
retry or not based on the parameters.

Default behavior is to not retry OperationThrottlingException because the retry time is likely much longer
than normal because they are DDL operations. In addition, not retry any requests that should not be retired:
TableRequest, ListTablesRequest, GetTableRequest, TableUsageRequest, GetIndexesRequest.

Always retry SecurityInfoNotReadyException until exceed the request timeout. It’s not restrained by the
maximum retries configured for this handler, the driver with retry handler with 0 retry setting would still
retry this exception.

Parameters

• request (Request) – the request that has triggered the exception.

• num_retried (int) – the number of retries that have occurred for the operation.

• re (RetryableException) – the exception that was thrown.

Returns True if the operation should be retried, False if not, causing the exception to be thrown
to the application.

Return type bool

Raises IllegalArgumentException – raises the exception if num_retried is not a positive
number.

get_num_retries()
Returns the number of retries that this handler instance will allow before the exception is thrown to the
application.

Returns the max number of retries.

Return type int

RetryableException

exception borneo.RetryableException(message)
A base class for all exceptions that may be retried with a reasonable expectation that they may succeed on retry.

SecurityInfoNotReadyException

exception borneo.SecurityInfoNotReadyException(message)
Cloud service only.

An exception that is thrown when security information is not ready in the system. This exception will occur as
the system acquires security information and must be retried in order for authorization to work properly.

State

class borneo.State
Bases: object

Represents the table state.

4.1. borneo Package 93

NoSQL Database Python SDK Documentation

Attributes Summary

ACTIVE Represents the table is active.
CREATING Represents the table is creating.
DROPPED Represents the table is dropped.
DROPPING Represents the table is dropping.
UPDATING Represents the table is updating.

Attributes Documentation

ACTIVE = 'ACTIVE'
Represents the table is active.

CREATING = 'CREATING'
Represents the table is creating.

DROPPED = 'DROPPED'
Represents the table is dropped.

DROPPING = 'DROPPING'
Represents the table is dropping.

UPDATING = 'UPDATING'
Represents the table is updating.

StatsControl

class borneo.StatsControl(config, logger, is_rate_limiting_enabled)
Bases: object

StatsControl allows user to control the collection of driver statistics at runtime.

The statistics data is collected for an interval of time. At the end of the interval, the stats data is
logged in a specified JSON format that can be filtered and parsed. After the logging, the counters are
cleared and collection of data resumes.

Collection intervals are aligned to the top of the hour. This means first interval logs may contain stats
for a shorter interval.

Collection of stats are controlled by the following environment variables:

NOSQL_STATS_PROFILE=[none|regular|more|all]

Specifies the stats profile:

• none - disabled,

• regular - per request: counters, errors, latencies, delays, retries. This incurs
minimum overhead.

• more - stats above with 95th and 99th percentile latencies. This may add 0.5%
overhead compared to none stats profile.

• all - stats above with per query information. This may add 1% overhead com-
pared to none stats profile.

NOSQL_STATS_INTERVAL=600 Interval in seconds to log the stats, by default is 10 min-
utes.

94 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

NOSQL_STATS_PRETTY_PRINT=true Option to enable pretty printing of the JSON data,
default value is false.

Collection of stats can also be used by using the API:

NoSQLHandleConfig.set_stats_profile() or StatsControl.set_profile().
At runtime stats collection can be enabled selectively by using StatsControl.start() ond
StatsControl.stop(). The following example shows how to use a stats handler and how to
control the stas at runtime:

def stats_handler(stats):
type: (Dict) -> None
print("Stats : " + str(stats))

...
config = NoSQLHandleConfig(endpoint)
config.set_stats_profile(StatsProfile.REGULAR)
config.set_stats_interval(600)
config.set_stats_pretty_print(False)
config.set_stats_handler(stats_handler)

handle = NoSQLHandle(config)

handle = get_handle(tenant_id)

stats_control = handle.get_stats_control()

#... application code without stats

enable observations
stats_control.start();

#... application code with REGULAR stats

For particular parts of code profile can be changed to collect more
→˓stats.
stats_control.set_stats_profile(StatsProfile.ALL)
#... more sensitive code with ALL stats

stats_control.set_stats_profile(StatsProfile.REGULAR)
#... application code with REGULAR stats

disable observations
stats_control.stop()

#... application code without stats
handle.close()

The following is an example of stats log entry using the ALL profile:

• A one time entry containing stats id and options:

INFO: Client stats|{ // INFO log entry
"sdkName" : "Oracle NoSQL SDK for Python", // SDK name
"sdkVersion" : "5.2.4", // SDK version
"clientId" : "f595b333", // NoSQLHandle id
"profile" : "ALL", // stats profile
"intervalSec" : 600, // interval length in
→˓seconds
"prettyPrint" : true, // JSON pretty print

(continues on next page)

4.1. borneo Package 95

NoSQL Database Python SDK Documentation

(continued from previous page)

"rateLimitingEnabled" : false} // if rate limiting is
→˓enabled

• An entry at the end of each interval containing the stats values:

``INFO: Client stats|{
"clientId" : "b7bc7734", // id of NoSQLHandle object
"startTime" : "2021-09-20T20:11:42Z", // UTC start interval time
"endTime" : "2021-09-20T20:11:47Z", // UTC end interval time
"requests" : [{ // array of types of requests
"name" : "Get", // stats for GET request type
"httpRequestCount" : 2, // count of http requests
"errors" : 0, // number of errors in

→˓interval
"httpRequestLatencyMs" : { // response time of http

→˓requests
"min" : 4, // minimum value in

→˓interval
"avg" : 4.5, // average value in

→˓interval
"max" : 5, // maximum value in

→˓interval
"95th" : 5, // 95th percentile value
"99th" : 5 // 99th percentile value

},
"requestSize" : { // http request size in bytes
"min" : 42, // minimum value in

→˓interval
"avg" : 42.5, // average value in

→˓interval
"max" : 43 // maximum value in

→˓interval
},
"resultSize" : { // http result size in bytes
"min" : 193, // minimum value in

→˓interval
"avg" : 206.5, // average value in

→˓interval
"max" : 220 // maximum value in

→˓interval
},
"rateLimitDelayMs" : 0, // delay in milliseconds

→˓introduced by the rate limiter
"retry" : { // retries
"delayMs" : 0, // delay in milliseconds

→˓introduced by retries
"authCount" : 0, // no of auth retries
"throttleCount" : 0, // no of throttle retries
"count" : 0 // total number of retries

}
}, {
"name" : "Query", // stats for all QUERY type

→˓requests
"httpRequestCount" : 14,
"errors" : 0,
"httpRequestLatencyMs" : {
"min" : 3,

(continues on next page)

96 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

(continued from previous page)

"avg" : 13.0,
"max" : 32,
"95th" : 32,
"99th" : 32

},
"resultSize" : {
"min" : 146,
"avg" : 7379.71,
"max" : 10989

},
"requestSize" : {
"min" : 65,
"avg" : 709.85,
"max" : 799

},
"rateLimitDelayMs" : 0,
"retry" : {
"delayMs" : 0,
"authCount" : 0,
"throttleCount" : 0,
"count" : 0

}
}, {
"name" : "Put", // stats for PUT type requests
"httpRequestCount" : 1002,
"errors" : 0,
"httpRequestLatencyMs" : {
"min" : 1,
"avg" : 4.41,
"max" : 80,
"95th" : 8,
"99th" : 20

},
"requestSize" : {
"min" : 90,
"avg" : 90.16,
"max" : 187

},
"resultSize" : {
"min" : 58,
"avg" : 58.0,
"max" : 58

},
"rateLimitDelayMs" : 0,
"retry" : {
"delayMs" : 0,
"authCount" : 0,
"throttleCount" : 0,
"count" : 0

}
}],
"queries" : [{ // query stats aggregated by query
→˓statement

// query statement
"query" : "SELECT * FROM audienceData ORDER BY cookie_id",

// query plan description
"plan" : "SFW([6])

(continues on next page)

4.1. borneo Package 97

NoSQL Database Python SDK Documentation

(continued from previous page)

[
FROM:
RECV([3])
[
DistributionKind : ALL_PARTITIONS,
Sort Fields : sort_gen,

] as $from-0
SELECT:
FIELD_STEP([6])
[
VAR_REF($from-0)([3]),
audienceData
]

]",
"doesWrites" : false,
"httpRequestCount" : 12, // number of http calls to the server
"unprepared" : 1, // number of query requests without

→˓prepare
"simple" : false, // type of query
"count" : 20, // number of handle.query() API calls
"errors" : 0, // number of calls trowing exception
"httpRequestLatencyMs" : {// response time of http requests in

→˓milliseconds
"min" : 8, // minimum value in interval
"avg" : 14.58, // average value in interval
"max" : 32, // maximum value in interval
"95th" : 32, // 95th percentile value in interval
"99th" : 32 // 99th percentile value in interval

},
"requestSize" : { // http request size in bytes
"min" : 65, // minimum value in interval
"avg" : 732.5, // average value in interval
"max" : 799 // maximum value in interval

},
"resultSize" : { // http result size in bytes
"min" : 914, // minimum value in interval
"avg" : 8585.33, // average value in interval
"max" : 10989 // maximum value in interval

},
"rateLimitDelayMs" : 0, // total delay introduced by rate

→˓limiter in milliseconds
"retry" : { // automatic retries
"delayMs" : 0, // delay introduced by retries
"authCount" : 0, // count of auth related retries
"throttleCount" : 0, // count of throttle related retries
"count" : 0 // total count of retries

}
}]
}``

The log entries go to the logger configured in NoSQLHandlerConfig. By default, if no logger is configured the
statistics entries, if enabled, will be logged to file logs/driver.log in the local directory.

Stats collection is not dependent of logging configuration, even if logging is disabled, collection of stats will
still happen if stats profile other than none is used. In this case, the stats are available by using the stats handler.

Depending on the type of query, if client processing is required, for example in the case of ordered or aggregate
queries, indicated by the false simple field of the query entry, the count and httpRequestsCount numbers

98 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

will differ. count represents the number of handle.query() API calls and httpRequestCount represents
the number of internal http requests from server. For these type of queries, the driver executes several simpler
queries, per shard or partition, and than combines the results locally.

Note: connection statistics are not available for NoSQL Python driver.

Attributes Summary

LOG_PREFIX

Methods Summary

get_id() Returns a pseudo unique string to identify the
NoSQLHandle object.

get_interval() Returns the current collection interval.
get_logger() Returns the current logger.
get_pretty_print() Returns the current JSON pretty print flag.
get_profile() Returns the stats collection profile.
get_stats_handler() Returns the registered handler.
is_started() Returns true if collection of stats is enabled, other-

wise returns false.
observe(request, req_size, res_size, . . .) Internal method only.
observe_error(request) Internal method only.
observe_query(query_request) Internal method only.
set_pretty_print(pretty_print) Enable JSON pretty print for easier human reading.
set_profile(profile) Set the stats collection stats_profile.
set_stats_handler(stats_handler) Registers a user defined stats handler.
shutdown() Logs the stats collected and stops the timer.
start() Collection of stats is enabled only between start and

stop or from the beginning if environment property
NOSQL_STATS_PROFILE is not “none”.

stop() Stops collection of stats.

Attributes Documentation

LOG_PREFIX = 'Client stats|'

Methods Documentation

get_id()
Returns a pseudo unique string to identify the NoSQLHandle object.

get_interval()
Returns the current collection interval. Default interval is 600 seconds, i.e. 10 min.

get_logger()
Returns the current logger.

get_pretty_print()
Returns the current JSON pretty print flag. Default is disabled.

4.1. borneo Package 99

NoSQL Database Python SDK Documentation

get_profile()
Returns the stats collection profile. Default stats profile is NONE.

get_stats_handler()
Returns the registered handler.

is_started()
Returns true if collection of stats is enabled, otherwise returns false.

observe(request, req_size, res_size, network_latency)
Internal method only.

observe_error(request)
Internal method only.

observe_query(query_request)
Internal method only.

set_pretty_print(pretty_print)
Enable JSON pretty print for easier human reading. Default is disabled.

set_profile(profile)
Set the stats collection stats_profile. Default stats stats_profile is NONE.

set_stats_handler(stats_handler)
Registers a user defined stats handler. The handler is called at the end of the interval with a structure
containing the logged stat values.

shutdown()
Logs the stats collected and stops the timer.

start()
Collection of stats is enabled only between start and stop or from the beginning if environment property
NOSQL_STATS_PROFILE is not “none”.

stop()
Stops collection of stats.

StatsProfile

class borneo.StatsProfile
Bases: enum.Enum

The following semantics are attached to the StatsProfile values:

• NONE: no stats are logged.

• REGULAR: per request: counters, errors, latencies, delays, retries

• MORE: stats above plus 95th and 99th percentile latencies.

• ALL: stats above plus per query information

Attributes Summary

ALL
MORE
NONE
REGULAR

100 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Attributes Documentation

ALL = 4

MORE = 3

NONE = 1

REGULAR = 2

SystemException

exception borneo.SystemException(message)
An exception that is thrown when there is an internal system problem. Most system problems are temporary, so
this is a retryable exception.

SystemRequest

class borneo.SystemRequest
Bases: borneo.operations.Request

On-premise only.

SystemRequest is an on-premise-only request used to perform any table-independent administrative operation
such as create/drop of namespaces and security-relevant operations (create/drop users and roles). These opera-
tions are asynchronous and completion needs to be checked.

Examples of statements used in this object include:

CREATE NAMESPACE mynamespace

CREATE USER some_user IDENTIFIED BY password

CREATE ROLE some_role

GRANT ROLE some_role TO USER some_user

Execution of operations specified by this request is implicitly asynchronous. These are potentially long-running
operations. NoSQLHandle.system_request() returns a SystemResult instance that can be used to
poll until the operation succeeds or fails.

Methods Summary

get_statement() Returns the statement, or None if not set.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_statement(statement) Sets the statement to use for the operation.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_statement()
Returns the statement, or None if not set.

Returns the statement.

Return type str

4.1. borneo Package 101

NoSQL Database Python SDK Documentation

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_statement(statement)
Sets the statement to use for the operation.

Parameters statement (str) – the statement. This is a required parameter.

Returns self.

Raises IllegalArgumentException – raises the exception if statement is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

SystemResult

class borneo.SystemResult
Bases: borneo.operations.Result

On-premise only.

SystemResult is returned from NoSQLHandle.system_status() and NoSQLHandle.
system_request() operations. It encapsulates the state of the operation requested.

Some operations performed by NoSQLHandle.system_request() are asynchronous. When such an
operation has been performed it is necessary to call NoSQLHandle.system_status() until the status of
the operation is known. The method wait_for_completion() exists to perform this task and should be
used whenever possible.

Asynchronous operations (e.g. create namespace) can be distinguished from synchronous system operations in
this way:

Asynchronous operations may return a non-none operation id.

Asynchronous operations modify state, while synchronous operations are read-only.

Synchronous operations return a state of STATE.COMPLETE and have a non-none result string.

NoSQLHandle.system_status() is synchronous, returning the known state of the operation. It should
only be called if the operation was asynchronous and returned a non-none operation id.

Methods Summary

get_operation_id() Returns the operation id for the operation if it was
asynchronous.

get_operation_state() Returns the operation state.
Continued on next page

102 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 42 – continued from previous page
get_result_string() Returns the result string for the operation.
get_statement() Returns the statement used for the operation.
wait_for_completion(handle, wait_millis,
. . .)

Waits for the operation to be complete.

Methods Documentation

get_operation_id()
Returns the operation id for the operation if it was asynchronous. This is None if the request did not
generate a new operation and/or the operation state is SystemState.COMPLETE. The value can be used
in SystemStatusRequest.set_operation_id() to get status and find potential errors resulting
from the operation.

This method is only useful for the result of asynchronous operations.

Returns the operation id.

Return type str

get_operation_state()
Returns the operation state.

Returns the state.

Return type int

get_result_string()
Returns the result string for the operation. This is None if the request was asynchronous or did not return
an actual result. For example the “show” operations return a non-none result string, but “create, drop,
grant, etc.” operations return a none result string.

Returns the result string.

Return type str

get_statement()
Returns the statement used for the operation.

Returns the statement.

Return type str

wait_for_completion(handle, wait_millis, delay_millis)
Waits for the operation to be complete. This is a blocking, polling style wait that delays for the specified
number of milliseconds between each polling operation.

This instance is modified with any changes in state.

Parameters

• handle (NoSQLHandle) – the NoSQLHandle to use. This is required.

• wait_millis (int) – the total amount of time to wait, in milliseconds. This value
must be non-zero and greater than delay_millis. This is required.

• delay_millis (int) – the amount of time to wait between polling attempts, in mil-
liseconds. If 0 it will default to 500. This is required.

Raises IllegalArgumentException – raises the exception if the operation times out or
the parameters are not valid.

4.1. borneo Package 103

NoSQL Database Python SDK Documentation

SystemState

class borneo.SystemState
Bases: object

On-premise only.

The current state of the system request.

Attributes Summary

COMPLETE The operation is complete and was successful.
WORKING The operation is in progress.

Attributes Documentation

COMPLETE = 'COMPLETE'
The operation is complete and was successful. Failures are thrown as exceptions.

WORKING = 'WORKING'
The operation is in progress.

SystemStatusRequest

class borneo.SystemStatusRequest
Bases: borneo.operations.Request

On-premise only.

SystemStatusRequest is an on-premise-only request used to check the status of an operation started using a
SystemRequest.

Methods Summary

get_operation_id() Returns the operation id to use for the request, None
if not set.

get_statement() Returns the statement set by set_statement(),
or None if not set.

get_timeout() Returns the timeout to use for the operation, in mil-
liseconds.

set_operation_id(operation_id) Sets the operation id to use for the request.
set_statement(statement) Sets the statement that was used for the operation.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_operation_id()
Returns the operation id to use for the request, None if not set.

Returns the operation id.

Return type str

104 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

get_statement()
Returns the statement set by set_statement(), or None if not set.

Returns the statement.

Return type str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_operation_id(operation_id)
Sets the operation id to use for the request. The operation id can be obtained via SystemResult.
get_operation_id(). This parameter is not optional and represents an asynchronous operation that
may be in progress. It is used to examine the result of the operation and if the operation has failed an ex-
ception will be thrown in response to a NoSQLHandle.system_status() operation. If the operation
is in progress or has completed successfully, the state of the operation is returned.

Parameters operation_id (str) – the operation id.

Returns self.

Raises IllegalArgumentException – raises the exception if operation_id is a negative
number.

set_statement(statement)
Sets the statement that was used for the operation. This is optional and is not used in any significant way.
It is returned, unmodified, in the SystemResult for convenience.

Parameters statement (str) – the statement. This is a optional parameter.

Returns self.

Raises IllegalArgumentException – raises the exception if statement is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

TableExistsException

exception borneo.TableExistsException(message)
The operation attempted to create a table but the named table already exists.

TableLimits

class borneo.TableLimits(read_units, write_units, storage_gb, mode=1)
Bases: object

Cloud service only.

4.1. borneo Package 105

NoSQL Database Python SDK Documentation

A TableLimits instance is used during table creation to specify the throughput and capacity to be consumed
by the table. It is also used in an operation to change the limits of an existing table. NoSQLHandle.
table_request() and TableRequest are used to perform these operations. These values are enforced
by the system and used for billing purposes.

Throughput limits are defined in terms of read units and write units. A read unit represents 1 eventually consis-
tent read per second for data up to 1 KB in size. A read that is absolutely consistent is double that, consuming 2
read units for a read of up to 1 KB in size. This means that if an application is to use Consistency.ABSOLUTE
it may need to specify additional read units when creating a table. A write unit represents 1 write per second of
data up to 1 KB in size.

In addition to throughput table capacity must be specified to indicate the maximum amount of storage, in giga-
bytes, allowed for the table.

In provisioned mode, all 3 values must be used whenever using this object. There are no defaults and no
mechanism to indicate “no change.”

In on demand mode, only the storage_gb parameter must be set.

Parameters

• read_units (int) – the desired throughput of read operation in terms of read units. A
read unit represents 1 eventually consistent read per second for data up to 1 KB in size. A
read that is absolutely consistent is double that, consuming 2 read units for a read of up to 1
KB in size.

• write_units (int) – the desired throughput of write operation in terms of write units.
A write unit represents 1 write per second of data up to 1 KB in size.

• storage_gb (int) – the maximum storage to be consumed by the table, in gigabytes.

• mode (CAPACITY_MODE) – the mode of the table: provisioned (the default) or on demand.

Raises IllegalArgumentException – raises the exception if parameters are not valid.

Versionchanged 5.3.0, added optional CAPACITY_MODE

Methods Summary

get_mode() Returns the capacity mode of the table.
get_read_units() Returns the read throughput in terms of read units.
get_storage_gb() Returns the storage capacity in gigabytes.
get_write_units() Returns the write throughput in terms of write units.
set_mode(mode) Sets the mode of the table:
set_read_units(read_units) Sets the read throughput in terms of read units.
set_storage_gb(storage_gb) Sets the storage capacity in gigabytes.
set_write_units(write_units) Sets the write throughput in terms of write units.

Methods Documentation

__init__(read_units, write_units, storage_gb, mode=1)
Creates a TableLimits object

Parameters

• read_units (int) – the desired throughput of read operation in terms of read units. A
read unit represents 1 eventually consistent read per second for data up to 1 KB in size. A
read that is absolutely consistent is double that, consuming 2 read units for a read of up to

106 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

1 KB in size.

• write_units (int) – the desired throughput of write operation in terms of write units.
A write unit represents 1 write per second of data up to 1 KB in size.

• storage_gb (int) – the maximum storage to be consumed by the table, in gigabytes.

• mode (CAPACITY_MODE) – the mode of the table: provisioned (the default) or on de-
mand.

Raises IllegalArgumentException – raises the exception if parameters are not valid.

Versionchanged 5.3.0, added optional CAPACITY_MODE

get_mode()
Returns the capacity mode of the table.

Returns mode: PROVISIONED or ON_DEMAND

Versionadded 5.3.0

get_read_units()
Returns the read throughput in terms of read units.

Returns the read units.

Return type int

get_storage_gb()
Returns the storage capacity in gigabytes.

Returns the storage capacity in gigabytes.

Return type int

get_write_units()
Returns the write throughput in terms of write units.

Returns the write units.

Return type int

set_mode(mode)

Sets the mode of the table: PROVISIONED: Fixed maximum read/write units. This is the default.
ON_DEMAND: Flexible read/write limits.

Parameters mode (TableLimits.CAPACITY_MODE) – the capacity to use, in gigabytes.

Returns self.

Raises IllegalArgumentException – raises the exception if mode is invalid.

Versionadded 5.3.0

set_read_units(read_units)
Sets the read throughput in terms of read units.

Parameters read_units (int) – the throughput to use, in read units.

Returns self.

Raises IllegalArgumentException – raises the exception if read_units is not a integer.

set_storage_gb(storage_gb)
Sets the storage capacity in gigabytes.

4.1. borneo Package 107

NoSQL Database Python SDK Documentation

Parameters storage_gb (int) – the capacity to use, in gigabytes.

Returns self.

Raises IllegalArgumentException – raises the exception if storage_gb is not a integer.

set_write_units(write_units)
Sets the write throughput in terms of write units.

Parameters write_units (int) – the throughput to use, in write units.

Returns self.

Raises IllegalArgumentException – raises the exception if write_units is not a integer.

TableNotFoundException

exception borneo.TableNotFoundException(message)
The operation attempted to access a table that does not exist or is not in a visible state.

TableRequest

class borneo.TableRequest
Bases: borneo.operations.Request

TableRequest is used to create, modify, and drop tables. The operations allowed are those supported by the Data
Definition Language (DDL) portion of the query language. The language provides for table creation and removal
(drop), index add and drop, as well as schema evolution via alter table. Operations using DDL statements infer
the table name from the query statement itself, e.g. “create table mytable(. . .)”. Table creation requires a valid
TableLimits object to define the throughput desired for the table. If TableLimits is provided with any other
type of query statement an exception is thrown.

This request is also used to modify the limits of throughput and storage for an existing table. This case is handled
by specifying a table name and limits without a query statement. If all three are specified it is an error.

Execution of operations specified by this request is implicitly asynchronous. These are potentially long-running
operations. NoSQLHandle.table_request() returns a TableResult instance that can be used to poll
until the table reaches the desired state.

The statement is required parameter unless modifying limits.

Methods Summary

get_compartment() Cloud service only.
get_statement() Returns the statement, or None if not set.
get_table_limits() Returns the table limits, or None if not set.
get_table_name() Returns the table name to use for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_compartment(compartment) Cloud service only.
set_statement(statement) Sets the query statement to use for the operation.
set_table_limits(table_limits) Cloud service only.
set_table_name(table_name) Sets the table name to use for the operation.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

108 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_statement()
Returns the statement, or None if not set.

Returns the statement.

Return type str

get_table_limits()
Returns the table limits, or None if not set.

Returns the limits.

Return type TableLimits

get_table_name()
Returns the table name to use for the operation.

Returns the table name, or None if not set.

Returns str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_statement(statement)
Sets the query statement to use for the operation. This parameter is required unless the operation is intended
to change the limits of an existing table.

Parameters statement (str) – the statement.

Returns self.

4.1. borneo Package 109

NoSQL Database Python SDK Documentation

Raises IllegalArgumentException – raises the exception if statement is not a string.

set_table_limits(table_limits)
Cloud service only.

Sets the table limits to use for the operation. Limits are used in only 2 cases – table creation statements
and limits modification operations. It is not used for other DDL operations.

If limits are set for an on-premise service they are silently ignored.

Parameters table_limits (TableLimits) – the limits.

Returns self.

Raises IllegalArgumentException – raises the exception if table_limits is not an in-
stance TableLimits.

set_table_name(table_name)
Sets the table name to use for the operation. The table name is only used to modify the limits of an existing
table, and must not be set for any other operation.

Parameters table_name (str) – the name of the table.

Returns self.

Raises IllegalArgumentException – raises the exception if table_name is not a string.

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

TableResult

class borneo.TableResult
Bases: borneo.operations.Result

TableResult is returned from NoSQLHandle.get_table() and NoSQLHandle.table_request()
operations. It encapsulates the state of the table that is the target of the request.

Operations available in NoSQLHandle.table_request() such as table creation, modification, and
drop are asynchronous operations. When such an operation has been performed, it is necessary to call
NoSQLHandle.get_table() until the status of the table is State.ACTIVE, State.DROPPED or there is
an error condition. The method wait_for_completion() exists to perform this task and should be used
to wait for an operation to complete.

NoSQLHandle.get_table() is synchronous, returning static information about the table as well as its
current state.

Methods Summary

get_operation_id() Returns the operation id for an asynchronous opera-
tion.

Continued on next page

110 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 47 – continued from previous page
get_schema() Returns the schema for the table.
get_state() Returns the table state.
get_table_limits() Returns the throughput and capacity limits for the ta-

ble.
get_table_name() Returns the table name of the target table.
wait_for_completion(handle, wait_millis,
. . .)

Waits for a table operation to complete.

Methods Documentation

get_operation_id()
Returns the operation id for an asynchronous operation. This is none if the request did not generate a new
operation. The value can be used in set_operation_id() to find potential errors resulting from the
operation.

Returns the operation id for an asynchronous operation.

Return type str

get_schema()
Returns the schema for the table.

Returns the schema for the table.

Return type str

get_state()
Returns the table state. A table in state State.ACTIVE or State.UPDATING is usable for normal operation.

Returns the state.

Return type State

get_table_limits()
Returns the throughput and capacity limits for the table. Limits from an on-premise service will always be
None.

Returns the limits.

Return type TableLimits

get_table_name()
Returns the table name of the target table.

Returns the table name.

Return type str

wait_for_completion(handle, wait_millis, delay_millis)
Waits for a table operation to complete. Table operations are asynchronous. This is a blocking, polling
style wait that delays for the specified number of milliseconds between each polling operation. This call
returns when the table reaches a terminal state, which is either State.ACTIVE or State.DROPPED.

This instance must be the return value of a previous NoSQLHandle.table_request() and contain
a non-none operation id representing the in-progress operation unless the operation has already completed.

This instance is modified with any change in table state or metadata.

Parameters

• handle (NoSQLHandle) – the NoSQLHandle to use.

4.1. borneo Package 111

NoSQL Database Python SDK Documentation

• wait_millis (int) – the total amount of time to wait, in milliseconds. This value
must be non-zero and greater than delay_millis.

• delay_millis (int) – the amount of time to wait between polling attempts, in mil-
liseconds. If 0 it will default to 500.

Raises

• IllegalArgumentException – raises the exception if the parameters are not valid.

• RequestTimeoutException – raises the exception if the operation times out.

TableUsageRequest

class borneo.TableUsageRequest
Bases: borneo.operations.Request

Cloud service only.

Represents the argument of a NoSQLHandle.get_table_usage() operation which returns dynamic in-
formation associated with a table, as returned in TableUsageResult. This information includes a time
series of usage snapshots, each indicating data such as read and write throughput, throttling events, etc, as found
in TableUsageResult.table_usage().

It is possible to return a range of usage records or, by default, only the most recent usage record. Usage records
are created on a regular basis and maintained for a period of time. Only records for time periods that have
completed are returned so that a user never sees changing data for a specific range.

The table name is required parameter.

Methods Summary

get_compartment() Cloud service only.
get_end_time() Returns the end time to use for the request in mil-

liseconds since the Epoch.
get_end_time_string() Returns the end time as an ISO 8601 formatted

string.
get_limit() Returns the limit to the number of usage records de-

sired.
get_start_time() Returns the start time to use for the request in mil-

liseconds since the Epoch.
get_start_time_string() Returns the start time as an ISO 8601 formatted

string.
get_table_name() Returns the table name to use for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
set_compartment(compartment) Cloud service only.
set_end_time(end_time) Sets the end time to use for the request in millisec-

onds since the Epoch in UTC time or an ISO 8601
formatted string accurate to milliseconds.

set_limit(limit) Sets the limit to the number of usage records desired.
set_start_time(start_time) Sets the start time to use for the request in millisec-

onds since the Epoch in UTC time or an ISO 8601
formatted string accurate to milliseconds.

Continued on next page

112 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Table 48 – continued from previous page
set_table_name(table_name) Sets the table name to use for the request.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_end_time()
Returns the end time to use for the request in milliseconds since the Epoch.

Returns the end time.

Return type int

get_end_time_string()
Returns the end time as an ISO 8601 formatted string. If the end timestamp is not set, None is returned.

Returns the end time, or None if not set.

Return type str

get_limit()
Returns the limit to the number of usage records desired.

Returns the numeric limit.

Return type int

get_start_time()
Returns the start time to use for the request in milliseconds since the Epoch.

Returns the start time.

Return type int

get_start_time_string()
Returns the start time as an ISO 8601 formatted string. If the start timestamp is not set, None is returned.

Returns the start time, or None if not set.

Return type str

get_table_name()
Returns the table name to use for the operation.

Returns the table name, or None if not set.

Returns str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the value.

Return type int

4.1. borneo Package 113

NoSQL Database Python SDK Documentation

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_end_time(end_time)
Sets the end time to use for the request in milliseconds since the Epoch in UTC time or an ISO 8601
formatted string accurate to milliseconds. If timezone is not specified it is interpreted as UTC.

If no time range is set for this request the most recent complete usage record is returned.

Parameters end_time (str) – the end time.

Returns self.

Raises IllegalArgumentException – raises the exception if end_time is a negative num-
ber and is not an ISO 8601 formatted string.

set_limit(limit)
Sets the limit to the number of usage records desired. If this value is 0 there is no limit, but not all usage
records may be returned in a single request due to size limitations.

Parameters limit (int) – the numeric limit.

Returns self.

Raises IllegalArgumentException – raises the exception if limit is a negative number.

set_start_time(start_time)
Sets the start time to use for the request in milliseconds since the Epoch in UTC time or an ISO 8601
formatted string accurate to milliseconds. If timezone is not specified it is interpreted as UTC.

If no time range is set for this request the most recent complete usage record is returned.

Parameters start_time (str) – the start time.

Returns self.

Raises IllegalArgumentException – raises the exception if start_time is a negative
number and is not an ISO 8601 formatted string.

set_table_name(table_name)
Sets the table name to use for the request. This is a required parameter.

Parameters table_name (str) – the table name.

Returns self.

Raises IllegalArgumentException – raises the exception if table_name is not a string.

114 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

TableUsageResult

class borneo.TableUsageResult
Bases: borneo.operations.Result

Cloud service only.

TableUsageResult is returned from NoSQLHandle.get_table_usage(). It encapsulates the dynamic
state of the requested table.

Methods Summary

get_table_name() Returns the table name used by the operation.
get_usage_records() Returns a list of usage records based on the parame-

ters of the TableUsageRequest used.

Methods Documentation

get_table_name()
Returns the table name used by the operation.

Returns the table name.

Return type str

get_usage_records()
Returns a list of usage records based on the parameters of the TableUsageRequest used.

Returns an list of usage records.

Type list(TableUsage)

ThrottlingException

exception borneo.ThrottlingException(message)
Cloud service only.

ThrottlingException is a base class for exceptions that indicate the application has exceeded a provisioned or
implicit limit in terms of size of data accessed or frequency of operation.

Operations resulting in this exception can be retried but it is recommended that callers use a delay before retrying
in order to minimize the chance that a retry will also be throttled.

It is recommended that applications use rate limiting to avoid these exceptions.

4.1. borneo Package 115

NoSQL Database Python SDK Documentation

TimeToLive

class borneo.TimeToLive(value, timeunit)
Bases: object

TimeToLive is a utility class that represents a period of time, similar to java.time.Duration in Java, but special-
ized to the needs of this driver.

This class is restricted to durations of days and hours. It is only used as input related to time to live (TTL) for
row instances.

Construction allows only day and hour durations for efficiency reasons. Durations of days are recommended as
they result in the least amount of storage overhead. Only positive durations are allowed on input.

Parameters

• value (int) – value of time.

• timeunit (TimeUnit) – unit of time, cannot be None.

Raises IllegalArgumentException – raises the exception if parameters are not expected
type.

Methods Summary

get_unit() Returns the time unit used for the duration.
get_value() Returns the numeric duration value.
of_days(days) Creates a duration using a period of 24 hour days.
of_hours(hours) Creates a duration using a period of hours.
to_days() Returns the number of days in this duration, which

may be negative.
to_expiration_time(reference_time) Returns an absolute time representing the duration

plus the absolute time reference parameter.
to_hours() Returns the number of hours in this duration, which

may be negative.

Methods Documentation

get_unit()
Returns the time unit used for the duration.

Returns the timeunit.

Return type TimeUnit

get_value()
Returns the numeric duration value.

Returns the duration value, independent of unit.

Return type int

static of_days(days)
Creates a duration using a period of 24 hour days.

Parameters days (int) – the number of days in the duration, must be a non-negative number.

Returns the duration.

Return type TimeToLive

116 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Raises IllegalArgumentException – raises the exception if a negative value is provided.

static of_hours(hours)
Creates a duration using a period of hours.

Parameters hours (int) – the number of hours in the duration, must be a non-negative num-
ber.

Returns the duration.

Return type TimeToLive

Raises IllegalArgumentException – raises the exception if a negative value is provided.

to_days()
Returns the number of days in this duration, which may be negative.

Returns the number of days.

Return type int

to_expiration_time(reference_time)
Returns an absolute time representing the duration plus the absolute time reference parameter. If an expi-
ration time from the current time is desired the parameter should be the current system time in millisecond.
If the duration of this object is 0, indicating no expiration time, this method will return 0, regardless of the
reference time.

Parameters reference_time (int) – an absolute time in milliseconds since January 1,
1970.

Returns time in milliseconds, 0 if this object’s duration is 0.

Return type int

Raises IllegalArgumentException – raises the exception if reference_time is not posi-
tive.

to_hours()
Returns the number of hours in this duration, which may be negative.

Returns the number of hours.

Return type int

TimeUnit

class borneo.TimeUnit
Bases: object

The time unit to use.

Attributes Summary

DAYS Set TimeUnit.DAYS to use day as time unit
HOURS Set TimeUnit.HOURS to use hour as time unit

Attributes Documentation

DAYS = 2
Set TimeUnit.DAYS to use day as time unit

4.1. borneo Package 117

NoSQL Database Python SDK Documentation

HOURS = 1
Set TimeUnit.HOURS to use hour as time unit

UserInfo

class borneo.UserInfo(user_id, user_name)
Bases: object

On-premise only.

A class that encapsulates the information associated with a user including the user id and name in the system.

Methods Summary

get_id() Returns the id associated with the user.
get_name() Returns the name associated with the user.

Methods Documentation

get_id()
Returns the id associated with the user.

Returns the user id string.

Return type str

get_name()
Returns the name associated with the user.

Returns the user name string.

Return type str

Version

class borneo.Version(version)
Bases: object

Version is an opaque class that represents the version of a row in the database. It is returned by success-
ful GetRequest and can be used in PutRequest.set_match_version() and DeleteRequest.
set_match_version() to conditionally perform those operations to ensure an atomic read-modify-write
cycle. This is an opaque object from an application perspective.

Use of Version in this way adds cost to operations so it should be done only if necessary.

Parameters version (bytearray) – a bytearray.

Raises IllegalArgumentException – raises the exception if version is not a bytearray.

Methods Summary

create_version(version) Returns an instance of Version.
get_bytes() Returns the bytearray from the Version.

118 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Methods Documentation

static create_version(version)
Returns an instance of Version.

Parameters version (bytearray) – a bytearray or None.

Returns an instance of Version.

Return type Version

Raises IllegalArgumentException – raises the exception if version is not a bytearray or
None.

get_bytes()
Returns the bytearray from the Version.

Returns the bytearray from the Version.

Return type bytearray

WriteMultipleRequest

class borneo.WriteMultipleRequest
Bases: borneo.operations.Request

Represents the input to a NoSQLHandle.write_multiple() operation.

This request can be used to perform a sequence of PutRequest or DeleteRequest operations associated
with a table that share the same shard key portion of their primary keys, the WriteMultiple operation as whole
is atomic. It is an efficient way to atomically modify multiple related rows.

On a successful operation WriteMultipleResult.get_success() returns True. The execution result
of each operations can be retrieved using WriteMultipleResult.get_results().

If the WriteMultiple operation is aborted because of the failure of an operation with abort_if_unsuccessful
set to True, then WriteMultipleResult.get_success() return False, the index of failed
operation can be accessed using WriteMultipleResult.get_failed_operation_index(),
and the execution result of failed operation can be accessed using WriteMultipleResult.
get_failed_operation_result().

Methods Summary

add(request, abort_if_unsuccessful) Adds a Request to the operation list, do validation
check before adding it.

clear() Removes all of the operations from the WriteMulti-
ple request.

get_compartment() Cloud service only.
get_durability() On-premise only.
get_num_operations() Returns the number of Requests.
get_request(index) Returns the Request at the given position, it may

be either a PutRequest or DeleteRequest ob-
ject.

get_table_name() Returns the table name to use for the operation.
get_timeout() Returns the timeout to use for the operation, in mil-

liseconds.
Continued on next page

4.1. borneo Package 119

NoSQL Database Python SDK Documentation

Table 54 – continued from previous page
set_compartment(compartment) Cloud service only.
set_durability(durability) On-premise only.
set_timeout(timeout_ms) Sets the request timeout value, in milliseconds.

Methods Documentation

add(request, abort_if_unsuccessful)
Adds a Request to the operation list, do validation check before adding it.

Parameters

• request (Request) – the Request to add, either PutRequest or DeleteRequest.

• abort_if_unsuccessful (bool) – True if this operation should cause the entire
WriteMultiple operation to abort when this operation fails.

Returns self.

Raises

• BatchOperationNumberLimitException – raises the exception if the number
of requests exceeds the limit, or IllegalArgumentException if the request is neither a
PutRequest or DeleteRequest. Or any invalid state of the Request.

• IllegalArgumentException – raises the exception if parameters are not expected
type.

clear()
Removes all of the operations from the WriteMultiple request.

get_compartment()
Cloud service only.

Get the compartment id or name if set for the request.

Returns compartment id or name if set for the request, otherwise None if not set.

Return type str

get_durability()
On-premise only. Gets the durability to use for the operation or None if not set :returns: the Durability
:versionadded: 5.3.0

get_num_operations()
Returns the number of Requests.

Returns the number of Requests.

Return type int

get_request(index)
Returns the Request at the given position, it may be either a PutRequest or DeleteRequest object.

Parameters index (int) – the position of Request to get.

Returns the Request at the given position.

Return type Request

Raises

• IndexOutOfBoundsException – raises the exception if the position is negative or
greater or equal to the number of Requests.

120 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

• IllegalArgumentException – raises the exception if index is a negative number.

get_table_name()
Returns the table name to use for the operation.

Returns the table name, or None if not set.

Returns str

get_timeout()
Returns the timeout to use for the operation, in milliseconds. A value of 0 indicates that the timeout has
not been set.

Returns the timeout value.

Return type int

set_compartment(compartment)
Cloud service only.

Sets the name or id of a compartment to be used for this operation.

The compartment may be specified as either a name (or path for nested compartments) or as an id
(OCID). A name (vs id) can only be used when authenticated using a specific user identity. It is not
available if authenticated as an Instance Principal which can be done when calling the service from
a compute instance in the Oracle Cloud Infrastructure. See borneo.iam.SignatureProvider.
create_with_instance_principal().

Parameters compartment (str) – the compartment name or id. If using a nested com-
partment, specify the full compartment path compartmentA.compartmentB, but exclude the
name of the root compartment (tenant).

Returns self.

Raises IllegalArgumentException – raises the exception if compartment is not a str.

set_durability(durability)
On-premise only. Sets the durability to use for the operation.

Parameters durability (Durability) – the Durability to use

Returns self.

Raises IllegalArgumentException – raises the exception if Durability is not valid

Versionadded 5.3.0

set_timeout(timeout_ms)
Sets the request timeout value, in milliseconds. This overrides any default value set in
NoSQLHandleConfig. The value must be positive.

Parameters timeout_ms (int) – the timeout value, in milliseconds.

Returns self.

Raises IllegalArgumentException – raises the exception if the timeout value is less
than or equal to 0.

WriteMultipleResult

class borneo.WriteMultipleResult
Bases: borneo.operations.Result

Represents the result of a NoSQLHandle.write_multiple() operation.

4.1. borneo Package 121

NoSQL Database Python SDK Documentation

If the WriteMultiple succeeds, the execution result of each sub operation can be retrieved using
get_results().

If the WriteMultiple operation is aborted because of the failure of an operation with abort_if_unsuccessful set
to True, then the index of failed operation can be accessed using get_failed_operation_index(), and
the execution result of failed operation can be accessed using get_failed_operation_result().

Methods Summary

get_failed_operation_index() Returns the index of failed operation that results in
the entire WriteMultiple operation aborting.

get_failed_operation_result() Returns the result of the operation that results in the
entire WriteMultiple operation aborting.

get_read_kb() Returns the read throughput consumed by this oper-
ation, in KBytes.

get_read_units() Returns the read throughput consumed by this oper-
ation, in read units.

get_results() Returns the list of execution results for the opera-
tions.

get_success() Returns True if the WriteMultiple operation suc-
ceeded, or False if the operation is aborted due to
the failure of a sub operation.

get_write_kb() Returns the write throughput consumed by this oper-
ation, in KBytes.

get_write_units() Returns the write throughput consumed by this oper-
ation, in write units.

size() Returns the number of results.

Methods Documentation

get_failed_operation_index()
Returns the index of failed operation that results in the entire WriteMultiple operation aborting.

Returns the index of operation, -1 if not set.

Return type int

get_failed_operation_result()
Returns the result of the operation that results in the entire WriteMultiple operation aborting.

Returns the result of the operation, None if not set.

Return type OperationResult or None

get_read_kb()
Returns the read throughput consumed by this operation, in KBytes. This is the actual amount of data read
by the operation. The number of read units consumed is returned by get_read_units() which may
be a larger number because this was an update operation.

Returns the read KBytes consumed.

Return type int

get_read_units()
Returns the read throughput consumed by this operation, in read units. This number may be larger than
that returned by get_read_kb() because it was an update operation.

122 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns the read units consumed.

Return type int

get_results()
Returns the list of execution results for the operations.

Returns the list of execution results.

Return type list(OperationResult)

get_success()
Returns True if the WriteMultiple operation succeeded, or False if the operation is aborted due to the
failure of a sub operation.

The failed operation index can be accessed using get_failed_operation_index() and its result
can be accessed using get_failed_operation_result().

Returns True if the operation succeeded.

Return type bool

get_write_kb()
Returns the write throughput consumed by this operation, in KBytes.

Returns the write KBytes consumed.

Return type int

get_write_units()
Returns the write throughput consumed by this operation, in write units.

Returns the write units consumed.

Return type int

size()
Returns the number of results.

Returns the number of results.

Return type int

WriteThrottlingException

exception borneo.WriteThrottlingException(message)
Cloud service only.

This exception indicates that the provisioned write throughput has been exceeded.

Operations resulting in this exception can be retried but it is recommended that callers use a delay before retrying
in order to minimize the chance that a retry will also be throttled. Applications should attempt to avoid throttling
exceptions by rate limiting themselves to the degree possible.

4.2 borneo.iam Package

4.2.1 Classes

SignatureProvider([provider, config_file, . . .]) Cloud service only.

4.2. borneo.iam Package 123

NoSQL Database Python SDK Documentation

SignatureProvider

class borneo.iam.SignatureProvider(provider=None, config_file=None, profile_name=None,
tenant_id=None, user_id=None, fingerprint=None, pri-
vate_key=None, pass_phrase=None, region=None, dura-
tion_seconds=240, refresh_ahead=10)

Bases: borneo.auth.AuthorizationProvider

Cloud service only.

An instance of borneo.AuthorizationProvider that generates and caches signature for each request
as authorization string. A number of pieces of information are required for configuration. See Required Keys
and OCIDs for information and instructions on how to create the required keys and OCIDs for configuration.
The required information includes:

• A signing key, used to sign requests.

• A pass phrase for the key, if it is encrypted.

• The fingerprint of the key pair used for signing.

• The OCID of the tenancy.

• The OCID of a user in the tenancy.

All of this information is required to authenticate and authorize access to the service. See Acquire Credentials
for the Oracle NoSQL Database Cloud Service for information on how to acquire this information.

There are three different ways to authorize an application:

1. Using a specific user’s identity.

2. Using an Instance Principal, which can be done when running on a compute instance in the Oracle Cloud
Infrastructure (OCI). See create_with_instance_principal() and Calling Services from In-
stances.

3. Using a Resource Principal, which can be done when running within a Function within the Oracle Cloud
Infrastructure (OCI). See create_with_resource_principal() and Accessing Other Oracle
Cloud Infrastructure Resources from Running Functions.

The latter 2 limit the ability to use a compartment name vs OCID when naming compartments and tables in
Request classes and when naming tables in queries. A specific user identity is best for naming flexibility,
allowing both compartment names and OCIDs.

When using a specific user’s identity there are 3 options for providing the required information:

1. Using a instance of oci.signer.Signer or oci.auth.signers.SecurityTokenSigner

2. Directly providing the credentials via parameters

3. Using a configuration file

Only one method of providing credentials can be used, and if they are mixed the priority from high to low is:

• Signer or SecurityTokenSigner(provider is used)

• Credentials as arguments (tenant_id, etc used)

• Configuration file (config_file is used)

Parameters

• provider (Signer or SecurityTokenSigner) – an instance of oci.signer.Signer
or oci.auth.signers.SecurityTokenSigner.

• config_file (str) – path of configuration file.

124 Chapter 4. API Reference

https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Functions/Tasks/functionsaccessingociresources.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Functions/Tasks/functionsaccessingociresources.htm

NoSQL Database Python SDK Documentation

• profile_name (str) – user profile name. Only valid with config_file.

• tenant_id (str) – id of the tenancy

• user_id (str) – id of a specific user

• private_key (str) – path to private key or private key content

• fingerprint (str) – fingerprint for the private key

• pass_phrase (str) – pass_phrase for the private key if created

• region (Region) – identifies the region will be accessed by the NoSQLHandle

• duration_seconds (int) – the signature cache duration in seconds.

• refresh_ahead (int) – the refresh time before signature cache expiry in seconds.

Raises IllegalArgumentException – raises the exception if the parameters are not valid.

Attributes Summary

DEFAULT_REFRESH_AHEAD Default refresh time before signature expiry, 10 sec-
onds.

MAX_ENTRY_LIFE_TIME Maximum lifetime of signature 240 seconds.

Methods Summary

close() Closes the signature provider.
create_with_instance_principal([. . .]) Creates a SignatureProvider using an instance prin-

cipal.
create_with_resource_principal([logger]) Creates a SignatureProvider using a resource princi-

pal.
get_authorization_string([request]) Returns an authorization string for the specified re-

quest.
get_logger() Returns the logger of this provider if set, None if not.
get_resource_principal_claim(key) Resource principal session tokens carry JWT claims.
set_logger(logger) Sets a logger instance for this provider.

Attributes Documentation

DEFAULT_REFRESH_AHEAD = 10
Default refresh time before signature expiry, 10 seconds.

MAX_ENTRY_LIFE_TIME = 240
Maximum lifetime of signature 240 seconds.

Methods Documentation

close()
Closes the signature provider.

static create_with_instance_principal(iam_auth_uri=None, region=None, log-
ger=None)

Creates a SignatureProvider using an instance principal. This method may be used when calling the Oracle

4.2. borneo.iam Package 125

NoSQL Database Python SDK Documentation

NoSQL Database Cloud Service from an Oracle Cloud compute instance. It authenticates with the instance
principal and uses a security token issued by IAM to do the actual request signing.

When using an instance principal the compartment id (OCID) must be specified on each request or de-
faulted by using borneo.NoSQLHandleConfig.set_default_compartment(). If the com-
partment is not specified for an operation an exception will be thrown.

See Calling Services from Instances

Parameters

• iam_auth_uri (str) – the URI is usually detected automatically, specify the URI if
you need to overwrite the default, or encounter the Invalid IAM URI error, it is optional.

• region (Region) – identifies the region will be accessed by the NoSQLHandle, it is
optional.

• logger (Logger) – the logger used by the SignatureProvider, it is optional.

Returns a SignatureProvider.

Return type SignatureProvider

static create_with_resource_principal(logger=None)
Creates a SignatureProvider using a resource principal. This method may be used when calling the Oracle
NoSQL Database Cloud Service from other Oracle Cloud service resource such as Functions. It uses a
resource provider session token (RPST) that enables the resource such as function to authenticate itself.

When using an resource principal the compartment id (OCID) must be specified on each request or de-
faulted by using borneo.NoSQLHandleConfig.set_default_compartment(). If the com-
partment id is not specified for an operation an exception will be thrown.

See Accessing Other Oracle Cloud Infrastructure Resources from Running Functions.

Parameters logger (Logger) – the logger used by the SignatureProvider, it is optional.

Returns a SignatureProvider.

Return type SignatureProvider

get_authorization_string(request=None)
Returns an authorization string for the specified request. The string is sent to the server in the request and
is used for authorization. Authorization information can be request-dependent.

Parameters request (Request) – the request to be issued. This is an instance of
Request().

Returns a string indicating that the application is authorized to perform the request.

Return type str

get_logger()
Returns the logger of this provider if set, None if not.

Returns the logger.

Return type Logger or None

get_resource_principal_claim(key)
Resource principal session tokens carry JWT claims. Permit the retrieval of the value from the token by
given key. See borneo.ResourcePrincipalClaimKeys.

Parameters key (str) – the name of a claim in the session token.

Returns the claim value.

126 Chapter 4. API Reference

https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Functions/Tasks/functionsaccessingociresources.htm

NoSQL Database Python SDK Documentation

Return type str

set_logger(logger)
Sets a logger instance for this provider. If not set, the logger associated with the driver is used.

Parameters logger (Logger) – the logger to use.

Returns self.

Raises IllegalArgumentException – raises the exception if logger is not an instance of
Logger.

4.3 borneo.kv Package

4.3.1 Classes

AuthenticationException(message[, cause]) On-premise only.
StoreAccessTokenProvider([user_name, pass-
word])

On-premise only.

AuthenticationException

exception borneo.kv.AuthenticationException(message, cause=None)
On-premise only.

This exception is thrown when use StoreAccessTokenProvider in following cases:

Authentication information was not provided in the request header.

The authentication session has expired. By default StoreAccessTokenProvider will auto-
matically retry authentication operation based on its authentication information.

StoreAccessTokenProvider

class borneo.kv.StoreAccessTokenProvider(user_name=None, password=None)
Bases: borneo.auth.AuthorizationProvider

On-premise only.

StoreAccessTokenProvider is an borneo.AuthorizationProvider that performs the following func-
tions:

Initial (bootstrap) login to store, using credentials provided.

Storage of bootstrap login token for re-use.

Optionally renews the login token before it expires.

Logs out of the store when closed.

If accessing an insecure instance of Oracle NoSQL Database the default constructor is used, with no arguments.

If accessing a secure instance of Oracle NoSQL Database a user name and password must be provided. That
user must already exist in the NoSQL Database and have sufficient permission to perform table operations. That
user’s identity is used to authorize all database operations.

To access to a store without security enabled, no parameter need to be set to the constructor.

4.3. borneo.kv Package 127

NoSQL Database Python SDK Documentation

To access to a secure store, the constructor requires a valid user name and password to access the target store.
The user must exist and have sufficient permission to perform table operations required by the application. The
user identity is used to authorize all operations performed by the application.

Parameters

• user_name (str) – the user name to use for the store. This user must exist in the NoSQL
Database and is the identity that is used for authorizing all database operations.

• password (str) – the password for the user.

Raises IllegalArgumentException – raises the exception if one or more of the parameters
is malformed or a required parameter is missing.

Methods Summary

close() Close the provider, releasing resources such as a
stored login token.

get_logger() Returns the logger of this provider if set, None if not.
is_auto_renew() Returns whether the login token is to be automati-

cally renewed.
is_secure() Returns whether the provider is accessing a secured

store.
set_auto_renew(auto_renew) Sets the auto-renew state.
set_logger(logger) Sets a logger instance for this provider.

Methods Documentation

__init__(user_name=None, password=None)
Creates a StoreAccessTokenProvider

Parameters

• user_name (str) – the user name to use for the store. This user must exist in the
NoSQL Database and is the identity that is used for authorizing all database operations.

• password (str) – the password for the user.

Raises IllegalArgumentException – raises the exception if one or more of the parame-
ters is malformed or a required parameter is missing.

close()
Close the provider, releasing resources such as a stored login token.

get_logger()
Returns the logger of this provider if set, None if not.

Returns the logger.

Return type Logger or None

is_auto_renew()
Returns whether the login token is to be automatically renewed.

Returns True if auto-renew is set, otherwise False.

Return type bool

is_secure()
Returns whether the provider is accessing a secured store.

128 Chapter 4. API Reference

NoSQL Database Python SDK Documentation

Returns True if accessing a secure store, otherwise False.

Return type bool

set_auto_renew(auto_renew)
Sets the auto-renew state. If True, automatic renewal of the login token is enabled.

Parameters auto_renew (bool) – set to True to enable auto-renew.

Returns self.

Raises IllegalArgumentException – raises the exception if auto_renew is not True or
False.

set_logger(logger)
Sets a logger instance for this provider. If not set, the logger associated with the driver is used.

Parameters logger (Logger) – the logger to use.

Returns self.

Raises IllegalArgumentException – raises the exception if logger is not an instance of
Logger.

4.3. borneo.kv Package 129

NoSQL Database Python SDK Documentation

130 Chapter 4. API Reference

CHAPTER 5

How to find client statistics

StatsControl allows user to control the collection of driver statistics at runtime.

The statistics data is collected for an interval of time. At the end of the interval, the stats data is logged in a specified
JSON format that can be filtered and parsed. After the logging, the counters are cleared and collection of data resumes.

Collection intervals are aligned to the top of the hour. This means first interval logs may contain stats for a shorter
interval.

5.1 How to enable and configure from command line

Collection of stats are controlled by the following environment variables:

• NOSQL_STATS_PROFILE=[none|regular|more|all] Specifies the stats profile:

– none - disabled.

– regular - per request: counters, errors, latencies, delays, retries. This incurs minimum over-
head.

– more - stats above with 95th and 99th percentile latencies. This may add 0.5% overhead com-
pared to none stats profile.

– all - stats above with per query information. This may add 1% overhead compared to none stats
profile.

• NOSQL_STATS_INTERVAL=600 Interval in seconds to log the stats, by default is 10 minutes.

• NOSQL_STATS_PRETTY_PRINT=true Option to enable pretty printing of the JSON data, default value is
false.

131

NoSQL Database Python SDK Documentation

5.2 How to enable and configure using the API

Collection of stats can also be used by using the API: NoSQLHandleConfig.set_stats_profile()
or StatsControl.set_profile(). At runtime stats collection can be enabled selectively by using
StatsControl.start() ond StatsControl.stop(). The following example shows how to use a stats
handler and how to control the stats at runtime:

def stats_handler(stats):
type: (Dict) -> None
print("Stats : " + str(stats))

...
config = NoSQLHandleConfig(endpoint)
config.set_stats_profile(StatsProfile.REGULAR)
config.set_stats_interval(600)
config.set_stats_pretty_print(False)
config.set_stats_handler(stats_handler)

handle = NoSQLHandle(config)

handle = get_handle(tenant_id)

stats_control = handle.get_stats_control()

#... application code without stats

enable observations
stats_control.start();

#... application code with REGULAR stats

For particular parts of code profile can be changed to collect more stats.
stats_control.set_stats_profile(StatsProfile.ALL)
#... more sensitive code with ALL stats

stats_control.set_stats_profile(StatsProfile.REGULAR)
#... application code with REGULAR stats

disable observations
stats_control.stop()

#... application code without stats
handle.close()

5.3 Example log entry

The following is an example of stats log entry using the ALL profile:

• A one time entry containing stats id and options:

INFO: Client stats|{ // INFO log entry
"sdkName" : "Oracle NoSQL SDK for Python", // SDK name
"sdkVersion" : "5.2.4", // SDK version
"clientId" : "f595b333", // NoSQLHandle id
"profile" : "ALL", // stats profile
"intervalSec" : 600, // interval length in seconds

(continues on next page)

132 Chapter 5. How to find client statistics

NoSQL Database Python SDK Documentation

(continued from previous page)

"prettyPrint" : true, // JSON pretty print
"rateLimitingEnabled" : false} // if rate limiting is enabled

• An entry at the end of each interval containing the stats values:

INFO: Client stats|{
"clientId" : "b7bc7734", // id of NoSQLHandle object
"startTime" : "2021-09-20T20:11:42Z", // UTC start interval time
"endTime" : "2021-09-20T20:11:47Z", // UTC end interval time
"requests" : [{ // array of types of requests

"name" : "Get", // stats for GET request type
"httpRequestCount" : 2, // count of http requests
"errors" : 0, // number of errors in interval
"httpRequestLatencyMs" : { // response time of http requests
"min" : 4, // minimum value in interval
"avg" : 4.5, // average value in interval
"max" : 5, // maximum value in interval
"95th" : 5, // 95th percentile value
"99th" : 5 // 99th percentile value

},
"requestSize" : { // http request size in bytes
"min" : 42, // minimum value in interval
"avg" : 42.5, // average value in interval
"max" : 43 // maximum value in interval

},
"resultSize" : { // http result size in bytes
"min" : 193, // minimum value in interval
"avg" : 206.5, // average value in interval
"max" : 220 // maximum value in interval

},
"rateLimitDelayMs" : 0, // delay in milliseconds introduced by the

→˓rate limiter
"retry" : { // retries
"delayMs" : 0, // delay in milliseconds introduced by

→˓retries
"authCount" : 0, // no of auth retries
"throttleCount" : 0, // no of throttle retries
"count" : 0 // total number of retries

}
}, {

"name" : "Query", // stats for all QUERY type requests
"httpRequestCount" : 14,
"errors" : 0,
"httpRequestLatencyMs" : {
"min" : 3,
"avg" : 13.0,
"max" : 32,
"95th" : 32,
"99th" : 32

},
"resultSize" : {
"min" : 146,
"avg" : 7379.71,
"max" : 10989

},
"requestSize" : {
"min" : 65,

(continues on next page)

5.3. Example log entry 133

NoSQL Database Python SDK Documentation

(continued from previous page)

"avg" : 709.85,
"max" : 799

},
"rateLimitDelayMs" : 0,
"retry" : {
"delayMs" : 0,
"authCount" : 0,
"throttleCount" : 0,
"count" : 0

}
}, {

"name" : "Put", // stats for PUT type requests
"httpRequestCount" : 1002,
"errors" : 0,
"httpRequestLatencyMs" : {
"min" : 1,
"avg" : 4.41,
"max" : 80,
"95th" : 8,
"99th" : 20

},
"requestSize" : {
"min" : 90,
"avg" : 90.16,
"max" : 187

},
"resultSize" : {
"min" : 58,
"avg" : 58.0,
"max" : 58

},
"rateLimitDelayMs" : 0,
"retry" : {
"delayMs" : 0,
"authCount" : 0,
"throttleCount" : 0,
"count" : 0

}
}],
"queries" : [{ // query stats aggregated by query statement

// query statement
"query" : "SELECT * FROM audienceData ORDER BY cookie_id",

// query plan description

"plan" : "SFW([6])
[

FROM:
RECV([3])
[
DistributionKind : ALL_PARTITIONS,
Sort Fields : sort_gen,

] as $from-0
SELECT:
FIELD_STEP([6])
[
VAR_REF($from-0)([3]),
audienceData

(continues on next page)

134 Chapter 5. How to find client statistics

NoSQL Database Python SDK Documentation

(continued from previous page)

]
]",

"doesWrites" : false,
"httpRequestCount" : 12, // number of http calls to the server
"unprepared" : 1, // number of query requests without prepare
"simple" : false, // type of query
"count" : 20, // number of handle.query() API calls
"errors" : 0, // number of calls trowing exception
"httpRequestLatencyMs" : {// response time of http requests in milliseconds
"min" : 8, // minimum value in interval
"avg" : 14.58, // average value in interval
"max" : 32, // maximum value in interval
"95th" : 32, // 95th percentile value in interval
"99th" : 32 // 99th percentile value in interval

},
"requestSize" : { // http request size in bytes
"min" : 65, // minimum value in interval
"avg" : 732.5, // average value in interval
"max" : 799 // maximum value in interval

},
"resultSize" : { // http result size in bytes
"min" : 914, // minimum value in interval
"avg" : 8585.33, // average value in interval
"max" : 10989 // maximum value in interval

},
"rateLimitDelayMs" : 0, // total delay introduced by rate limiter in milliseconds
"retry" : { // automatic retries
"delayMs" : 0, // delay introduced by retries
"authCount" : 0, // count of auth related retries
"throttleCount" : 0, // count of throttle related retries
"count" : 0 // total count of retries

}
}]

The log entries go to the logger configured in NoSQLHandlerConfig. By default, if no logger is configured the statistics
entries, if enabled, will be logged to file logs/driver.log in the local directory.

Stats collection is not dependent of logging configuration, even if logging is disabled, collection of stats will still
happen if stats profile other than none is used. In this case, the stats are available by using the stats handler.

Depending on the type of query, if client processing is required, for example in the case of ordered or aggregate queries,
indicated by the false simple field of the query entry, the count and httpRequestsCount numbers will differ. count
represents the number of handle.query() API calls and httpRequestCount represents the number of internal
http requests from server. For these type of queries, the driver executes several simpler queries, per shard or partition,
and than combines the results locally.

Note: connection statistics are not available for NoSQL Python driver.

5.3. Example log entry 135

NoSQL Database Python SDK Documentation

136 Chapter 5. How to find client statistics

Python Module Index

b
borneo, 21
borneo.iam, 123
borneo.kv, 127

137

NoSQL Database Python SDK Documentation

138 Python Module Index

Index

Symbols
__init__() (borneo.Durability method), 26
__init__() (borneo.TableLimits method), 106
__init__() (borneo.kv.StoreAccessTokenProvider

method), 128

A
ABSOLUTE (borneo.Consistency attribute), 25
ACTIVE (borneo.State attribute), 94
add() (borneo.WriteMultipleRequest method), 120
ALL (borneo.StatsProfile attribute), 101
AP_MELBOURNE_1 (borneo.Regions attribute), 89
AP_MUMBAI_1 (borneo.Regions attribute), 89
AP_OSAKA_1 (borneo.Regions attribute), 89
AP_SEOUL_1 (borneo.Regions attribute), 89
AP_SYDNEY_1 (borneo.Regions attribute), 89
AP_TOKYO_1 (borneo.Regions attribute), 89
AuthenticationException, 127
AuthorizationProvider (class in borneo), 24

B
BatchOperationNumberLimitException, 25
borneo (module), 21
borneo.iam (module), 123
borneo.kv (module), 127

C
CA_MONTREAL_1 (borneo.Regions attribute), 89
CA_TORONTO_1 (borneo.Regions attribute), 89
clear() (borneo.WriteMultipleRequest method), 120
clear_variables() (borneo.PreparedStatement

method), 68
clone() (borneo.NoSQLHandleConfig method), 61
close() (borneo.AuthorizationProvider method), 24
close() (borneo.iam.SignatureProvider method), 125
close() (borneo.kv.StoreAccessTokenProvider

method), 128
close() (borneo.NoSQLHandle method), 51
close() (borneo.QueryRequest method), 81

COMPARTMENT_ID_CLAIM_KEY (bor-
neo.ResourcePrincipalClaimKeys attribute),
91

COMPLETE (borneo.SystemState attribute), 104
configure_default_retry_handler() (bor-

neo.NoSQLHandleConfig method), 61
Consistency (class in borneo), 25
copy_statement() (borneo.PreparedStatement

method), 68
create_version() (borneo.Version static method),

119
create_with_instance_principal() (bor-

neo.iam.SignatureProvider static method),
125

create_with_resource_principal() (bor-
neo.iam.SignatureProvider static method),
126

CREATING (borneo.State attribute), 94

D
DAYS (borneo.TimeUnit attribute), 117
DEFAULT_REFRESH_AHEAD (bor-

neo.iam.SignatureProvider attribute), 125
DefaultRetryHandler (class in borneo), 27
delay() (borneo.DefaultRetryHandler method), 27
delay() (borneo.RetryHandler method), 92
delete() (borneo.NoSQLHandle method), 51
DeleteRequest (class in borneo), 27
DeleteResult (class in borneo), 30
do_retry() (borneo.DefaultRetryHandler method),

27
do_retry() (borneo.RetryHandler method), 92
do_system_request() (borneo.NoSQLHandle

method), 52
do_table_request() (borneo.NoSQLHandle

method), 52
DROPPED (borneo.State attribute), 94
DROPPING (borneo.State attribute), 94
Durability (class in borneo), 25

139

NoSQL Database Python SDK Documentation

E
endpoint() (borneo.Region method), 87
EU_AMSTERDAM_1 (borneo.Regions attribute), 89
EU_FRANKFURT_1 (borneo.Regions attribute), 89
EU_ZURICH_1 (borneo.Regions attribute), 89
EVENTUAL (borneo.Consistency attribute), 25

F
FieldRange (class in borneo), 32
from_region_id() (borneo.Regions static method),

90

G
get() (borneo.NoSQLHandle method), 53
get_authorization_provider() (bor-

neo.NoSQLHandleConfig method), 61
get_authorization_string() (bor-

neo.AuthorizationProvider method), 24
get_authorization_string() (bor-

neo.iam.SignatureProvider method), 126
get_bytes() (borneo.Version method), 119
get_client() (borneo.NoSQLHandle method), 53
get_compartment() (borneo.DeleteRequest

method), 28
get_compartment() (borneo.GetIndexesRequest

method), 34
get_compartment() (borneo.GetRequest method),

36
get_compartment() (borneo.GetTableRequest

method), 40
get_compartment() (borneo.ListTablesRequest

method), 43
get_compartment() (borneo.MultiDeleteRequest

method), 46
get_compartment() (borneo.PrepareRequest

method), 70
get_compartment() (borneo.PutRequest method),

74
get_compartment() (borneo.QueryRequest

method), 81
get_compartment() (borneo.TableRequest method),

109
get_compartment() (borneo.TableUsageRequest

method), 113
get_compartment() (borneo.WriteMultipleRequest

method), 120
get_consistency() (borneo.NoSQLHandleConfig

method), 61
get_consistency() (borneo.QueryRequest

method), 81
get_continuation_key() (bor-

neo.MultiDeleteRequest method), 46
get_continuation_key() (bor-

neo.MultiDeleteResult method), 49

get_continuation_key() (borneo.QueryResult
method), 85

get_default_compartment() (bor-
neo.NoSQLHandleConfig method), 61

get_default_consistency() (bor-
neo.NoSQLHandleConfig method), 61

get_default_table_request_timeout()
(borneo.NoSQLHandleConfig method), 62

get_default_timeout() (bor-
neo.NoSQLHandleConfig method), 62

get_durability() (borneo.DeleteRequest method),
28

get_durability() (borneo.MultiDeleteRequest
method), 46

get_durability() (borneo.PutRequest method), 74
get_durability() (borneo.WriteMultipleRequest

method), 120
get_end() (borneo.FieldRange method), 33
get_end_inclusive() (borneo.FieldRange

method), 33
get_end_time() (borneo.TableUsageRequest

method), 113
get_end_time_string() (bor-

neo.TableUsageRequest method), 113
get_existing_modification_time() (bor-

neo.DeleteResult method), 31
get_existing_modification_time() (bor-

neo.OperationResult method), 67
get_existing_modification_time() (bor-

neo.PutResult method), 78
get_existing_value() (borneo.DeleteResult

method), 31
get_existing_value() (borneo.OperationResult

method), 67
get_existing_value() (borneo.PutResult

method), 78
get_existing_version() (borneo.DeleteResult

method), 31
get_existing_version() (bor-

neo.OperationResult method), 67
get_existing_version() (borneo.PutResult

method), 78
get_expiration_time() (borneo.GetResult

method), 38
get_failed_operation_index() (bor-

neo.WriteMultipleResult method), 122
get_failed_operation_result() (bor-

neo.WriteMultipleResult method), 122
get_field_names() (borneo.IndexInfo method), 42
get_field_path() (borneo.FieldRange method), 33
get_generated_value() (borneo.OperationResult

method), 67
get_generated_value() (borneo.PutResult

method), 78

140 Index

NoSQL Database Python SDK Documentation

get_id() (borneo.StatsControl method), 99
get_id() (borneo.UserInfo method), 118
get_index_name() (borneo.GetIndexesRequest

method), 34
get_index_name() (borneo.IndexInfo method), 42
get_indexes() (borneo.GetIndexesResult method),

36
get_indexes() (borneo.NoSQLHandle method), 53
get_interval() (borneo.StatsControl method), 99
get_key() (borneo.DeleteRequest method), 28
get_key() (borneo.GetRequest method), 37
get_key() (borneo.MultiDeleteRequest method), 46
get_last_returned_index() (bor-

neo.ListTablesResult method), 45
get_limit() (borneo.ListTablesRequest method), 43
get_limit() (borneo.QueryRequest method), 81
get_limit() (borneo.TableUsageRequest method),

113
get_logger() (borneo.AuthorizationProvider

method), 24
get_logger() (borneo.iam.SignatureProvider

method), 126
get_logger() (borneo.kv.StoreAccessTokenProvider

method), 128
get_logger() (borneo.NoSQLHandleConfig

method), 62
get_logger() (borneo.StatsControl method), 99
get_match_version() (borneo.DeleteRequest

method), 28
get_match_version() (borneo.PutRequest

method), 74
get_math_context() (borneo.QueryRequest

method), 81
get_max_content_length() (bor-

neo.NoSQLHandleConfig method), 62
get_max_memory_consumption() (bor-

neo.QueryRequest method), 81
get_max_read_kb() (borneo.QueryRequest

method), 81
get_max_write_kb() (borneo.MultiDeleteRequest

method), 46
get_max_write_kb() (borneo.QueryRequest

method), 81
get_mode() (borneo.TableLimits method), 107
get_name() (borneo.UserInfo method), 118
get_namespace() (borneo.ListTablesRequest

method), 43
get_num_deletions() (borneo.MultiDeleteResult

method), 49
get_num_operations() (bor-

neo.WriteMultipleRequest method), 120
get_num_retries() (borneo.DefaultRetryHandler

method), 27
get_num_retries() (borneo.RetryHandler

method), 93
get_operation_id() (borneo.GetTableRequest

method), 40
get_operation_id() (borneo.SystemResult

method), 103
get_operation_id() (borneo.SystemStatusRequest

method), 104
get_operation_id() (borneo.TableResult method),

111
get_operation_state() (borneo.SystemResult

method), 103
get_option() (borneo.PutRequest method), 74
get_pool_connections() (bor-

neo.NoSQLHandleConfig method), 62
get_pool_maxsize() (borneo.NoSQLHandleConfig

method), 62
get_prepared_statement() (bor-

neo.PrepareResult method), 71
get_prepared_statement() (bor-

neo.QueryRequest method), 81
get_pretty_print() (borneo.StatsControl

method), 99
get_profile() (borneo.StatsControl method), 99
get_query_plan() (borneo.PreparedStatement

method), 68
get_query_plan() (borneo.PrepareRequest

method), 70
get_range() (borneo.MultiDeleteRequest method),

46
get_read_kb() (borneo.DeleteResult method), 31
get_read_kb() (borneo.GetResult method), 38
get_read_kb() (borneo.MultiDeleteResult method),

49
get_read_kb() (borneo.PrepareResult method), 72
get_read_kb() (borneo.PutResult method), 78
get_read_kb() (borneo.QueryIterableResult

method), 86
get_read_kb() (borneo.QueryResult method), 85
get_read_kb() (borneo.WriteMultipleResult

method), 122
get_read_units() (borneo.DeleteResult method),

32
get_read_units() (borneo.GetResult method), 39
get_read_units() (borneo.MultiDeleteResult

method), 49
get_read_units() (borneo.PrepareResult method),

72
get_read_units() (borneo.PutResult method), 78
get_read_units() (borneo.QueryIterableResult

method), 86
get_read_units() (borneo.QueryResult method),

85
get_read_units() (borneo.TableLimits method),

107

Index 141

NoSQL Database Python SDK Documentation

get_read_units() (borneo.WriteMultipleResult
method), 122

get_region() (borneo.NoSQLHandleConfig
method), 62

get_request() (borneo.WriteMultipleRequest
method), 120

get_resource_principal_claim() (bor-
neo.iam.SignatureProvider method), 126

get_result_string() (borneo.SystemResult
method), 103

get_results() (borneo.QueryResult method), 85
get_results() (borneo.WriteMultipleResult

method), 123
get_retry_handler() (bor-

neo.NoSQLHandleConfig method), 62
get_return_row() (borneo.DeleteRequest method),

29
get_return_row() (borneo.PutRequest method), 74
get_schema() (borneo.TableResult method), 111
get_service_url() (borneo.NoSQLHandleConfig

method), 63
get_sql_text() (borneo.PreparedStatement

method), 69
get_ssl_ca_certs() (borneo.NoSQLHandleConfig

method), 63
get_ssl_cipher_suites() (bor-

neo.NoSQLHandleConfig method), 63
get_ssl_protocol() (borneo.NoSQLHandleConfig

method), 63
get_start() (borneo.FieldRange method), 33
get_start_inclusive() (borneo.FieldRange

method), 33
get_start_index() (borneo.ListTablesRequest

method), 43
get_start_time() (borneo.TableUsageRequest

method), 113
get_start_time_string() (bor-

neo.TableUsageRequest method), 113
get_state() (borneo.TableResult method), 111
get_statement() (borneo.PrepareRequest method),

70
get_statement() (borneo.QueryRequest method),

82
get_statement() (borneo.SystemRequest method),

101
get_statement() (borneo.SystemResult method),

103
get_statement() (borneo.SystemStatusRequest

method), 104
get_statement() (borneo.TableRequest method),

109
get_stats_control() (borneo.NoSQLHandle

method), 53
get_stats_handler() (borneo.StatsControl

method), 100
get_storage_gb() (borneo.TableLimits method),

107
get_success() (borneo.DeleteResult method), 32
get_success() (borneo.OperationResult method), 67
get_success() (borneo.WriteMultipleResult

method), 123
get_table() (borneo.NoSQLHandle method), 53
get_table_limits() (borneo.TableRequest

method), 109
get_table_limits() (borneo.TableResult method),

111
get_table_name() (borneo.DeleteRequest method),

29
get_table_name() (borneo.GetIndexesRequest

method), 34
get_table_name() (borneo.GetTableRequest

method), 40
get_table_name() (borneo.MultiDeleteRequest

method), 46
get_table_name() (borneo.PutRequest method), 74
get_table_name() (borneo.TableRequest method),

109
get_table_name() (borneo.TableResult method),

111
get_table_name() (borneo.TableUsageRequest

method), 113
get_table_name() (borneo.TableUsageResult

method), 115
get_table_name() (borneo.WriteMultipleRequest

method), 121
get_table_request_timeout() (bor-

neo.NoSQLHandleConfig method), 63
get_table_usage() (borneo.NoSQLHandle

method), 54
get_tables() (borneo.ListTablesResult method), 45
get_timeout() (borneo.DeleteRequest method), 29
get_timeout() (borneo.GetIndexesRequest method),

35
get_timeout() (borneo.GetRequest method), 37
get_timeout() (borneo.GetTableRequest method),

40
get_timeout() (borneo.ListTablesRequest method),

43
get_timeout() (borneo.MultiDeleteRequest

method), 47
get_timeout() (borneo.NoSQLHandleConfig

method), 63
get_timeout() (borneo.PrepareRequest method), 70
get_timeout() (borneo.PutRequest method), 75
get_timeout() (borneo.QueryRequest method), 82
get_timeout() (borneo.SystemRequest method), 101
get_timeout() (borneo.SystemStatusRequest

method), 105

142 Index

NoSQL Database Python SDK Documentation

get_timeout() (borneo.TableRequest method), 109
get_timeout() (borneo.TableUsageRequest

method), 113
get_timeout() (borneo.WriteMultipleRequest

method), 121
get_ttl() (borneo.PutRequest method), 75
get_unit() (borneo.TimeToLive method), 116
get_update_ttl() (borneo.PutRequest method), 75
get_usage_records() (borneo.TableUsageResult

method), 115
get_use_table_default_ttl() (bor-

neo.PutRequest method), 75
get_value() (borneo.GetResult method), 39
get_value() (borneo.PutRequest method), 75
get_value() (borneo.TimeToLive method), 116
get_variables() (borneo.PreparedStatement

method), 69
get_version() (borneo.GetResult method), 39
get_version() (borneo.OperationResult method), 67
get_version() (borneo.PutResult method), 79
get_write_kb() (borneo.DeleteResult method), 32
get_write_kb() (borneo.GetResult method), 39
get_write_kb() (borneo.MultiDeleteResult

method), 49
get_write_kb() (borneo.PrepareResult method), 72
get_write_kb() (borneo.PutResult method), 79
get_write_kb() (borneo.QueryIterableResult

method), 87
get_write_kb() (borneo.QueryResult method), 85
get_write_kb() (borneo.WriteMultipleResult

method), 123
get_write_units() (borneo.DeleteResult method),

32
get_write_units() (borneo.GetResult method), 39
get_write_units() (borneo.MultiDeleteResult

method), 49
get_write_units() (borneo.PrepareResult

method), 72
get_write_units() (borneo.PutResult method), 79
get_write_units() (borneo.QueryResult method),

85
get_write_units() (borneo.TableLimits method),

107
get_write_units() (borneo.WriteMultipleResult

method), 123
GetIndexesRequest (class in borneo), 34
GetIndexesResult (class in borneo), 36
GetRequest (class in borneo), 36
GetResult (class in borneo), 38
GetTableRequest (class in borneo), 39

H
HOURS (borneo.TimeUnit attribute), 117

I
IF_ABSENT (borneo.PutOption attribute), 72
IF_PRESENT (borneo.PutOption attribute), 72
IF_VERSION (borneo.PutOption attribute), 72
IllegalArgumentException, 41
IllegalStateException, 41
IndexExistsException, 41
IndexInfo (class in borneo), 41
IndexNotFoundException, 42
InvalidAuthorizationException, 42
is_auto_renew() (bor-

neo.kv.StoreAccessTokenProvider method),
128

is_done() (borneo.QueryRequest method), 82
is_secure() (borneo.kv.StoreAccessTokenProvider

method), 128
is_started() (borneo.StatsControl method), 100

L
list_namespaces() (borneo.NoSQLHandle

method), 54
list_roles() (borneo.NoSQLHandle method), 54
list_tables() (borneo.NoSQLHandle method), 54
list_users() (borneo.NoSQLHandle method), 55
ListTablesRequest (class in borneo), 42
ListTablesResult (class in borneo), 44
LOG_PREFIX (borneo.StatsControl attribute), 99

M
MAX_ENTRY_LIFE_TIME (bor-

neo.iam.SignatureProvider attribute), 125
ME_JEDDAH_1 (borneo.Regions attribute), 89
MORE (borneo.StatsProfile attribute), 101
multi_delete() (borneo.NoSQLHandle method), 55
MultiDeleteRequest (class in borneo), 45
MultiDeleteResult (class in borneo), 48

N
NONE (borneo.StatsProfile attribute), 101
NoSQLException, 49
NoSQLHandle (class in borneo), 50
NoSQLHandleConfig (class in borneo), 59

O
observe() (borneo.StatsControl method), 100
observe_error() (borneo.StatsControl method),

100
observe_query() (borneo.StatsControl method),

100
OC1_REGIONS (borneo.Regions attribute), 89
OC4_REGIONS (borneo.Regions attribute), 89
of_days() (borneo.TimeToLive static method), 116
of_hours() (borneo.TimeToLive static method), 117

Index 143

NoSQL Database Python SDK Documentation

OperationNotSupportedException, 66
OperationResult (class in borneo), 66
OperationThrottlingException, 67

P
prepare() (borneo.NoSQLHandle method), 55
PreparedStatement (class in borneo), 68
PrepareRequest (class in borneo), 69
PrepareResult (class in borneo), 71
put() (borneo.NoSQLHandle method), 55
PutOption (class in borneo), 72
PutRequest (class in borneo), 73
PutResult (class in borneo), 77

Q
query() (borneo.NoSQLHandle method), 56
query_iterable() (borneo.NoSQLHandle method),

57
QueryIterableResult (class in borneo), 86
QueryRequest (class in borneo), 79
QueryResult (class in borneo), 84

R
ReadThrottlingException, 87
Region (class in borneo), 87
Regions (class in borneo), 87
REGULAR (borneo.StatsProfile attribute), 101
REPLICA_ACK_POLICY (borneo.Durability attribute),

26
Request (class in borneo), 90
RequestSizeLimitException, 90
RequestTimeoutException, 90
ResourceExistsException, 91
ResourceNotFoundException, 91
ResourcePrincipalClaimKeys (class in borneo),

91
Result (class in borneo), 91
RetryableException, 93
RetryHandler (class in borneo), 92

S
SA_SAOPAULO_1 (borneo.Regions attribute), 89
SecurityInfoNotReadyException, 93
set_authorization_provider() (bor-

neo.NoSQLHandleConfig method), 63
set_auto_renew() (bor-

neo.kv.StoreAccessTokenProvider method),
129

set_compartment() (borneo.DeleteRequest
method), 29

set_compartment() (borneo.GetIndexesRequest
method), 35

set_compartment() (borneo.GetRequest method),
37

set_compartment() (borneo.GetTableRequest
method), 40

set_compartment() (borneo.ListTablesRequest
method), 43

set_compartment() (borneo.MultiDeleteRequest
method), 47

set_compartment() (borneo.PrepareRequest
method), 70

set_compartment() (borneo.PutRequest method),
75

set_compartment() (borneo.QueryRequest
method), 82

set_compartment() (borneo.TableRequest method),
109

set_compartment() (borneo.TableUsageRequest
method), 113

set_compartment() (borneo.WriteMultipleRequest
method), 121

set_consistency() (borneo.GetRequest method),
37

set_consistency() (borneo.NoSQLHandleConfig
method), 63

set_consistency() (borneo.QueryRequest
method), 82

set_continuation_key() (bor-
neo.MultiDeleteRequest method), 47

set_default_compartment() (bor-
neo.NoSQLHandleConfig method), 64

set_default_rate_limiting_percentage()
(borneo.NoSQLHandleConfig method), 64

set_durability() (borneo.DeleteRequest method),
29

set_durability() (borneo.MultiDeleteRequest
method), 47

set_durability() (borneo.PutRequest method), 75
set_durability() (borneo.WriteMultipleRequest

method), 121
set_end() (borneo.FieldRange method), 33
set_end_time() (borneo.TableUsageRequest

method), 114
set_get_query_plan() (borneo.PrepareRequest

method), 71
set_index_name() (borneo.GetIndexesRequest

method), 35
set_key() (borneo.DeleteRequest method), 29
set_key() (borneo.GetRequest method), 37
set_key() (borneo.MultiDeleteRequest method), 47
set_key_from_json() (borneo.DeleteRequest

method), 29
set_key_from_json() (borneo.GetRequest

method), 37
set_limit() (borneo.ListTablesRequest method), 44
set_limit() (borneo.QueryRequest method), 82
set_limit() (borneo.TableUsageRequest method),

144 Index

NoSQL Database Python SDK Documentation

114
set_logger() (borneo.AuthorizationProvider

method), 24
set_logger() (borneo.iam.SignatureProvider

method), 127
set_logger() (borneo.kv.StoreAccessTokenProvider

method), 129
set_logger() (borneo.NoSQLHandleConfig

method), 64
set_match_version() (borneo.DeleteRequest

method), 30
set_match_version() (borneo.PutRequest

method), 76
set_math_context() (borneo.QueryRequest

method), 83
set_max_content_length() (bor-

neo.NoSQLHandleConfig method), 64
set_max_memory_consumption() (bor-

neo.QueryRequest method), 83
set_max_read_kb() (borneo.QueryRequest

method), 83
set_max_write_kb() (borneo.MultiDeleteRequest

method), 47
set_max_write_kb() (borneo.QueryRequest

method), 83
set_mode() (borneo.TableLimits method), 107
set_namespace() (borneo.ListTablesRequest

method), 44
set_operation_id() (borneo.GetTableRequest

method), 40
set_operation_id() (borneo.SystemStatusRequest

method), 105
set_option() (borneo.PutRequest method), 76
set_pool_connections() (bor-

neo.NoSQLHandleConfig method), 64
set_pool_maxsize() (borneo.NoSQLHandleConfig

method), 65
set_prepared_statement() (bor-

neo.QueryRequest method), 83
set_pretty_print() (borneo.StatsControl

method), 100
set_profile() (borneo.StatsControl method), 100
set_range() (borneo.MultiDeleteRequest method),

48
set_rate_limiting_enabled() (bor-

neo.NoSQLHandleConfig method), 65
set_read_units() (borneo.TableLimits method),

107
set_retry_handler() (bor-

neo.NoSQLHandleConfig method), 65
set_return_row() (borneo.DeleteRequest method),

30
set_return_row() (borneo.PutRequest method), 76
set_ssl_ca_certs() (borneo.NoSQLHandleConfig

method), 65
set_ssl_cipher_suites() (bor-

neo.NoSQLHandleConfig method), 65
set_ssl_protocol() (borneo.NoSQLHandleConfig

method), 65
set_start() (borneo.FieldRange method), 34
set_start_index() (borneo.ListTablesRequest

method), 44
set_start_time() (borneo.TableUsageRequest

method), 114
set_statement() (borneo.PrepareRequest method),

71
set_statement() (borneo.QueryRequest method),

84
set_statement() (borneo.SystemRequest method),

102
set_statement() (borneo.SystemStatusRequest

method), 105
set_statement() (borneo.TableRequest method),

109
set_stats_handler() (borneo.StatsControl

method), 100
set_storage_gb() (borneo.TableLimits method),

107
set_table_limits() (borneo.TableRequest

method), 110
set_table_name() (borneo.DeleteRequest method),

30
set_table_name() (borneo.GetIndexesRequest

method), 35
set_table_name() (borneo.GetRequest method), 37
set_table_name() (borneo.GetTableRequest

method), 41
set_table_name() (borneo.MultiDeleteRequest

method), 48
set_table_name() (borneo.PutRequest method), 76
set_table_name() (borneo.TableRequest method),

110
set_table_name() (borneo.TableUsageRequest

method), 114
set_table_request_timeout() (bor-

neo.NoSQLHandleConfig method), 66
set_timeout() (borneo.DeleteRequest method), 30
set_timeout() (borneo.GetIndexesRequest method),

35
set_timeout() (borneo.GetRequest method), 38
set_timeout() (borneo.GetTableRequest method),

41
set_timeout() (borneo.ListTablesRequest method),

44
set_timeout() (borneo.MultiDeleteRequest

method), 48
set_timeout() (borneo.NoSQLHandleConfig

method), 66

Index 145

NoSQL Database Python SDK Documentation

set_timeout() (borneo.PrepareRequest method), 71
set_timeout() (borneo.PutRequest method), 76
set_timeout() (borneo.QueryRequest method), 84
set_timeout() (borneo.SystemRequest method), 102
set_timeout() (borneo.SystemStatusRequest

method), 105
set_timeout() (borneo.TableRequest method), 110
set_timeout() (borneo.TableUsageRequest

method), 114
set_timeout() (borneo.WriteMultipleRequest

method), 121
set_ttl() (borneo.PutRequest method), 76
set_use_table_default_ttl() (bor-

neo.PutRequest method), 77
set_value() (borneo.PutRequest method), 77
set_value_from_json() (borneo.PutRequest

method), 77
set_variable() (borneo.PreparedStatement

method), 69
set_write_units() (borneo.TableLimits method),

108
shutdown() (borneo.StatsControl method), 100
SignatureProvider (class in borneo.iam), 124
size() (borneo.WriteMultipleResult method), 123
start() (borneo.StatsControl method), 100
State (class in borneo), 93
StatsControl (class in borneo), 94
StatsProfile (class in borneo), 100
stop() (borneo.StatsControl method), 100
StoreAccessTokenProvider (class in borneo.kv),

127
SYNC_POLICY (borneo.Durability attribute), 26
system_request() (borneo.NoSQLHandle method),

57
system_status() (borneo.NoSQLHandle method),

57
SystemException, 101
SystemRequest (class in borneo), 101
SystemResult (class in borneo), 102
SystemState (class in borneo), 104
SystemStatusRequest (class in borneo), 104

T
table_request() (borneo.NoSQLHandle method),

58
TableExistsException, 105
TableLimits (class in borneo), 105
TableNotFoundException, 108
TableRequest (class in borneo), 108
TableResult (class in borneo), 110
TableUsageRequest (class in borneo), 112
TableUsageResult (class in borneo), 115
TENANT_ID_CLAIM_KEY (bor-

neo.ResourcePrincipalClaimKeys attribute),

91
ThrottlingException, 115
TimeToLive (class in borneo), 116
TimeUnit (class in borneo), 117
to_days() (borneo.TimeToLive method), 117
to_expiration_time() (borneo.TimeToLive

method), 117
to_hours() (borneo.TimeToLive method), 117

U
UK_GOV_LONDON_1 (borneo.Regions attribute), 89
UK_LONDON_1 (borneo.Regions attribute), 89
UPDATING (borneo.State attribute), 94
US_ASHBURN_1 (borneo.Regions attribute), 89
US_GOV_ASHBURN_1 (borneo.Regions attribute), 89
US_GOV_CHICAGO_1 (borneo.Regions attribute), 89
US_GOV_PHOENIX_1 (borneo.Regions attribute), 90
US_LANGLEY_1 (borneo.Regions attribute), 90
US_LUKE_1 (borneo.Regions attribute), 90
US_PHOENIX_1 (borneo.Regions attribute), 90
UserInfo (class in borneo), 118

V
Version (class in borneo), 118

W
wait_for_completion() (borneo.SystemResult

method), 103
wait_for_completion() (borneo.TableResult

method), 111
WORKING (borneo.SystemState attribute), 104
write_multiple() (borneo.NoSQLHandle method),

58
WriteMultipleRequest (class in borneo), 119
WriteMultipleResult (class in borneo), 121
WriteThrottlingException, 123

146 Index

	Installation
	Prerequisites
	Downloading and Installing the SDK
	Configuring the SDK

	Working With Tables
	Obtain a NoSQL Handle
	Create Tables and Indexes
	Add Data
	Read Data
	Use Queries
	Delete Data
	Modify Tables
	Delete Tables and Indexes
	Handle Errors
	Handle Resource Limits

	Data Types
	Oracle NoSQL Database Types
	Mapping Between Database and Python types
	Timestamp in Borneo

	API Reference
	borneo Package
	borneo.iam Package
	borneo.kv Package

	How to find client statistics
	How to enable and configure from command line
	How to enable and configure using the API
	Example log entry

	Python Module Index
	Index

